满堂支架计算书_第1页
满堂支架计算书_第2页
满堂支架计算书_第3页
满堂支架计算书_第4页
满堂支架计算书_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、海湖路桥箱梁断面较大,本方案计算以海湖路桥北幅为例进行计算,南幅计算与北幅相同。海湖路桥北幅为5X 30m等截面预应力混凝土箱形连续梁(标准段为单箱双室),箱梁高度,箱梁顶宽。对荷载进行计算及对其支架体系进行检算。满堂支架的计算内容为:碗扣式钢管支架立杆强度及稳定性验算满堂支架整体抗倾覆验算箱梁底模下横桥向方木验算碗扣式支架立杆顶托上顺桥向方木验算箱 梁底模计算立杆底座和地基承载力验算支架门洞计算。1 荷载分析荷载分类作用于模板支架上的荷载, 可分为永久荷载 (恒荷载) 和可变荷载(活荷载) 两类。模板支架的永久荷载,包括下列荷载。 作用在模板支架上的结构荷载,包括:新浇筑混凝土、模板等自重。

2、 组成模板支架结构的杆系自重,包括:立杆、纵向及横向水平杆、水平及垂直斜 撑等自重。 配件自重,根据工程实际情况定,包括:脚手板、栏杆、挡脚板、安全网等防护 设施及附加构件的自重。模板支架的可变荷载,包括下列荷载。 施工人员及施工设备荷载。 振捣混凝土时产生的荷载。 风荷载、雪荷载。荷载取值1)雪荷载根据建筑结构荷载规范(GB50009-2012)查附录可知,雪的标准荷载按照 50年一遇取西宁市雪压为 m2根据建筑结构荷载规范(GB50009-2012 )雪荷载计算公式 如下式所示。Sk=urx so式中:Sk雪荷载标准值(kN/m2);ur顶面积雪分布系数;So基本雪压(kN/m2)。根据规

3、建筑结构荷载规范 (GB 50009-2012)规定,按照矩形分布的雪堆计算。由于角度为小于25°,因此yr取平均值为,其计算过程如下所示。Sk=urx so=x 1=m22) 风荷载根据建筑结构荷载规范(GB50009-2012)查附录可知,风的标准荷载按照 50年 一遇取西宁市风压为 m2根据建筑施工扣件式钢管脚手架安全技术规范(JGJ 130-2011)风荷载计算公式如下式所示。W=x UsxWO式中:W风荷载强度(kN/m2);W基本风压(m);Uz风压高度计算系数,根据建筑施工扣件式钢管脚手架安全技术规范(JGJ 130-2011 )附录 D取;Us风荷载强度 W=x Us

4、xWO=xxx =m23) q1 箱梁自重荷载,按设计说明取值 26KN/m3。根据海湖路桥现浇箱梁结构特点,按照最不利荷载原则,每跨箱梁取I- I截面(跨中)、n-n截面(墩柱两侧)、m m截面(墩柱两侧)等三个代表截面进行箱梁自重计算(截面选择区段内箱梁自重最大处截面),并对三个代表截面下的支架体系进行检算,首先分别进行自重计算,单跨箱梁立面图见下图:单跨箱梁立面图1)1 - I截面处q1计算1525图海湖路桥I - I截面根据横断面图,则:qi= W = _A =( 26X) /= KN/m B B注:B箱梁底宽,取,将箱梁全部重量平均到底宽范围内计算偏于安全。Yc 混凝土容重,取26K

5、N/讥箱梁横截面混凝土面积(mJ 。2)n n截面处qi计算图海湖路桥n-n截面根据横断面图,则:W=d_A =( 26X) /= KN/mB B3)m m截面处qi计算图海湖路桥m-m截面 启y czt*-g根据横断面图,则:qp W =yja =( 26X) /= KN/m B B(4)q2模板自重荷载,根据建筑施工扣件式钢管脚手架安全技术规范(JGJ2130-2011 )取 m ;(5)q3施工人员、施工材料和机具荷载,按均布荷载计算,根据建筑施工 扣件式钢管脚手架安全技术规范(JGJ 130-2011 )取m2;(6)q4浇筑和振捣混凝土时产生的荷载,按均布荷载计算,根据建筑施工扣件式

6、钢管脚手架安全技术规范(JGJ 130-2011 )取m2 ;(7) q5支架自重,根据建筑施工碗扣式脚手架安全技术规范(GCJ-2011)取m。荷载组合系数为安全考虑,参照建筑结构荷载规范GB50009-2012规定,计算结构强度的荷载设计值,取其标准值乘以下列相应的分项系数:(1)永久荷载的分项系数,取;(2)可变荷载的分项系数,取。荷载组合荷载组合按照建筑施工碗扣式脚手架安全技术规范表 表荷载效应组合计算项目何载组合立杆承载力计算1.永久荷载+可变荷载(不包括风荷载)2.永久荷载+ (可变荷载+风荷载)连墙件承载力计算风荷载+斜杆承载力和连接扣件(抗滑)承载力计算风荷载2 结构检算碗扣式

7、钢管支架立杆强度及稳定性验算碗扣式满堂支架和扣件式满堂支架一样,同属于杆式结构,以立杆承受竖向荷载作用为主,但碗扣式由于立杆和横杆间为轴心相接,且横杆的“卜”型插头被立杆的上、碗扣紧固,对立杆受压后的侧向变形具有较强的约束能力,因而碗扣式钢管架稳定承 载能力显着高于扣件架(一般都高出 20%以上,甚至超过 35%)。本工程现浇箱梁支架立杆强度及稳定性验算,根据建筑施工扣件式钢管脚手架安全技术规范 JGJ 130-2011(本节计算过程中简称为“本规范” )立杆的强度及稳定性 计算公式进行分析计算。1、1 -I截面跨中18m范围内,碗扣式钢管支架体系采用 90X 90X 120cm的布置结构,见

8、图。1 )立杆强度验算根据立杆的设计允许荷载,当横杆步距为 120cm时,立杆可承受的最大允许竖直荷载为N = (参见路桥施工计算手册表13-5钢管支架容许荷载)。立杆实际承受的荷载为:N=X2 Nsk+XZ NQk (组合风荷载时)工Ns永久荷载对立杆产生的轴向力标准值总和;2 Nq可变荷载对立杆产生的轴向力标准值总和;将荷载取值结果带入计算公式:图:I -I截面支架布置图2 NGK=XX( q1+q2+q5) =X +=2 NQK=XX (q 3+q4+w+Sk)= X +=则:N=X2 Nsk + X2 Nq=X +XX =< N=,强度满足要求。(2)立杆稳定性验算立杆的稳定性计

9、算公式:N/ (A) +M/W< f(组合风荷载时)N计算立杆段的轴向荷载;f 钢材的抗压强度设计值,f = 205N/mmA支架立杆的截面积 A= 489mm参考路桥施工计算手册表13-4得);一轴心受压杆件的稳定系数,根据长细比入i 截面的回转半径i=,(参考路桥施工计算手册表13-4得);长细比入=L/i 0L水平步距,L=o于是,入=;MM=xx Mv= X *=;V抵抗矩WX 103mrT(参考路桥施工计算手册表13-4得);则,N/(A)+MVW=X 103/ (X 489) +X 106/ (X 103)=mrr f = 205KN/miTi计算结果说明支架立杆稳定性满足要

10、求。2、u - n截面桥墩旁2m6m范围内,碗扣式钢管支架体系采用60X 90X 120cm的布置结构,见图:大横杆小横杆图:模板n截面支架布置立杆/ /斜撑立杆模板载为N = (参见路桥施工计算手册表13-5钢管支架容许荷载)。立杆实际承受的荷载为:N=X2 Nsk+XZ NQk (组合风荷载时)2 Ns永久荷载对立杆产生的轴向力标准值总和;工Nq可变荷载对立杆产生的轴向力标准值总和;将荷载取值结果带入计算公式:2 NGK=XX( q1+q2+q5)=X +=2 Nqk=xx (q3+q4+w+S)二 X +=则:N=X2 Ngk + X2 Nq=X +XX =< N=,强度满足要求。

11、2)立杆稳定性验算立杆的稳定性计算公式:N/ (A) +M/W< f(组合风荷载时)N计算立杆段的轴向荷载;f 钢材的抗压强度设计值,f = 205N/mmA支架立杆的截面积 A= 489mm参考路桥施工计算手册表13-4得); 一轴心受压杆件的稳定系数,根据长细比入i 截面的回转半径 i=, (参考路桥施工计算手册表 13-4 得);长细比入=L/i。L水平步距,L=o于是,入=;MWMW=XX MWK=X *=m2;V抵抗矩WX 103mm(参考路桥施工计算手册表13-4得);则,N/(A)+MWW=X 103/ (X 489) +x 106/ (X 103)=mrr f = 205

12、KN/miTi计算结果说明支架立杆稳定性满足要求。3、m - m截面在桥墩旁两侧各2m范围内,碗扣式钢管支架体系采用 60 X 60X 120cm的布置结构,大横杆见图:小横杆A/八/ /./iV/i/ /:/、/二勺向横14 m =nid纵向模板斜撑立杆单位:mL/、Z/、/*V/、*V/f、 /八AAf/* /f/、模板/£f,2卡耳¥甲,©¥ 勺卩,甲色P,犁F,:F 耳,1 * 甲,C 斜撑 立杆/-3,.r'图:m - m截面支架布置图(1)立杆强度验算根据立杆的设计允许荷载,当横杆步距为 120cm时,立杆可承受的最大允许竖直荷载为N

13、 =(参见路桥施工计算手册表13-5钢管支架容许荷载)。立杆实际承受的荷载为:N=X2 NGk+X2 NQk (组合风荷载时)工NG永久荷载对立杆产生的轴向力标准值总和;2 NQ可变荷载对立杆产生的轴向力标准值总和;将荷载取值结果带入计算公式:2 NGk=xx( qi+q2+q5) =X +=工 Nq=xx (q3+q4+w+S)二 x +=则:N=x 艺 N3k + X2 NQk=X +xx =< Ni=,强度满足要求。2)立杆稳定性验算立杆的稳定性计算公式:N/ (A) +MWW< f(组合风荷载时)N计算立杆段的轴向荷载;f 钢材的抗压强度设计值,f = 205N/mrTiA

14、支架立杆的截面积 A= 489mm参考路桥施工计算手册表13-4得); 一轴心受压杆件的稳定系数,根据长细比入i 截面的回转半径i=,(参考路桥施工计算手册表13-4得);长细比入=L/i 0L水平步距,L=o于是,入=;MW2MW=XX MWK=X *=m2;V抵抗矩 WX 103mm(参考路桥施工计算手册表13-4得);则,N/(A)+MWW=X 103/ (X 489) +X 106/ (X 103)=f = 205KN/miTi计算结果说明支架立杆稳定性满足要求0满堂支架抗倾覆验算K)=稳定力矩/倾覆力矩=yX N/工Mw按海湖路桥北幅150m长度验算支架抗倾覆能力:桥梁宽度,长150

15、m采用90 X 90 X 120cm跨中支架来验算全桥:支架横向 18排;支架纵向 168排;平均高度;顶托TC60共需要168X 18=3024个;立杆需要 168X 18X =17842m;纵向横杆需要 168XX 18=14868m;横向横杆需要 18XX 150=13275m;故:钢管总重( 17842+14868+13275)X =;顶托TC60总重为:3025 X =;故支架重力 N1=X +X =;稳定力矩 = y X Ni=X =依据以上对风荷载计算 WK= m2海湖路桥左幅150m共受力为:q=XX 150=;倾覆力矩=qX 3=X 3=稳定力矩/倾覆力矩=>计算结果说

16、明本方案满堂支架满足抗倾覆要求。横桥向方木(底模背肋)验算本施工方案中箱梁底模底面横桥向采用 10X 10cm方木,方木横桥向跨度在跨中截面(I - I截面)处按L= 90cm进行受力计算,在桥墩顶横梁截面及横隔板梁处、桥墩顶及墩旁各6m范围内(11-11 、m - m截面处)按L=60cm进行受力计算,实际布置跨距均不超过上述两值。如下图将方木简化为如图的简支结构(偏于安全) ,木材的容许应力和 弹性模量的取值参照杉木进行计算,实际施工时如油松、广东松等力学性能优于杉木的 木材均可使用。横桥向方木受力结构图见下图:II截面处按桥每跨中I-I截面处范围内进行受力分析,按方木横桥向跨度L= 90

17、cm进行验算。 方木间距计算q = (q i+ q 2+ q 3+ q 4)x B= +X 18=Mk (1/8) qL 2=(1/8) XX =W=(bh2)/6= x /6=则:n= M/( W xS W )= X1 1000X =(取整数 n = 34 根)d= B/(n-1)=18/33=注:为方木的不均匀折减系数。经计算,方木间距小于均可满足要求,实际施工中为满足底模板受力要求,方木间 距d取,贝U n= 18/ = 61根。 每根方木挠度计算 方木的惯性矩 I=(bh 3)/12= x /12= x 1 0-6m4贝方木最大挠度:f max=(5/384) x(qL4)/(EI)

18、=(5/384) xx/(180x9x106xx10-6)=x10-3m< 1/400=400= x 10-3m (挠度满足要求)。 方木抗剪计算2-43Sm=(bxh2)/8=x/8=x10-4m3T =(qlS d/(nlb)=(XXX 10-4)/(61 xx 10-6 x =<xt =x =(抗剪强度满足要求)n-n截面处按桥墩旁n - n截面处范围内进行受力分析,按方木横桥向跨度L= 90cm进行验算。 方木间距计算q = (q 汁 q 2+ q 3+ q 4)x B= +X 8=Mk (1/8) qL 2=(1/8) xx=mW=(bh2)/6= x /6=则:n= M

19、/( W xS 则)=xilOOOX =(取整数 n= 18 根)d= B/(n-1)=8/17=注:为方木的不均匀折减系数。经计算,方木间距小于均可满足要求,实际施工中为满足底模板受力要求,方木间 距d取,贝U n = 8/ = 27根。 每根方木挠度计算 方木的惯性矩 I=(bh 3)/12= x /12= x 1O-6m4则方木最大挠度:f max=(5/384) x(qL4)/(EI) =(5/384) xx/(80 x9x106xx10-6)=x10-3m< 1/400=400= x 10-3m (挠度满足要求)。 每根方木抗剪计算2-43Sm=(bxh2)/8= x/8=x1

20、0-4m3T =(qlS d/(nlb)=(xxx 10-4) /(27 xx 10-6 x =<xt =x =(抗剪强度满足要求)按桥墩旁in rn截面处范围内进行受力分析,按方木横桥向跨度L=60cma行验算。 方木间距计算q = (q i+ q 2+ q 3+ q 4)x B= +X 4=Mk (1/8) qL 2=(1/8) XX=-mW=(bh)/6= x 16=则:n= M/( W xS 则)=XIIOOOX =14(取整数 n= 14 根)d= B/(n-1)=4/13=注:为方木的不均匀折减系数。经计算,方木间距小于均可满足要求,实际施工中为满足底模板受力要求,方木间 距

21、d取,贝U n = 4/ = 21根。 每根方木挠度计算 方木的惯性矩 I=(bh 3)/12= x /12= x 1O-6m4则方木最大挠度:fmax=(5/384) x(qL4)/(EI) =(5/384) xx/(80 x9x106xx10-6)=x10-3m< l/400=400= X 10-3m (挠度满足要求)。 每根方木抗剪计算2-43Sm=(b x h )/8= x /8= x 10 mT =(qlS d/(nIb)=(XXX 10-4 ) /(27 XX 10-6 X =<xt =x =(抗剪强度满足要求纵桥向方木(主梁)验算本施工方案中碗扣架顶托上顺桥向采用10

22、X 15cm方木作为纵向分配梁。顺桥向方木的跨距,根据立杆布置间距,在箱梁跨中18m范围内(I - I截面)按L= 90cm (横向间隔I = 90cm进行验算,桥墩旁2m6m范围内(n - n截面)按L= 90cm (横向间隔I =60cm进行验算,桥墩两侧2m范围内(m - m截面)按L=60cm(横向间隔I = 60cm进行验算。将方木简化为如图的简支结构(偏于安全)。木材的容许应力和弹性模量的取值 参照杉木进行计算,实际施工时如油松、广东松等力学性能优于杉木的木材均可使用。备注:因横桥向方木布置较密(净间距),故顺桥向方木按均布荷载考虑。II截面处跨中截面立杆顶托上顺桥向采用 10X1

23、5cm规格的方木,顺桥向方木跨距90cm横桥向间隔90cm布置,根据前受力布置图进行方木受力分析计算如下: 每根方木抗弯计算q = (qi+ q 2+ q 3+ q 4)x B= +X =m2Mk (1/8) qL =(1/8) XX=-mW=(bh)/6= x /6= x 10-4m则:S = MmaJ W=X 10-4)= <§ w = (符合要求) 注:为方木的不均匀折减系数。 每根方木抗剪计算贝q: T =QSm q0Imb 2Imb27.729 0.9 役251。4 1.25 MPa<XT =X =2 2.8125105 0.1符合要求。 每根方木挠度计算 方木

24、的惯性矩 I=(bh 3)/12= X /12= X 10-5m则方木最大挠度:fma=(5/384) X (qL4)/(EI) : =(5/384) XX /( 9 X 106XX 10-5): =X 10-4m3< 1/400=400= X 10- m故,挠度满足要求。n-n截面处墩旁26m范围内立杆顶托上顺桥向采用10X 15cm规格的方木,顺桥向方木跨距 90cm横桥向间隔60cm布置,根据前受力布置图进行方木受力分析计算如下:每根方木抗弯计算q = (q i+ q 2+ q 3+ q 4)x B= +X =mMf= (1/8) qL 2=(1/8) XX=mW=(bh)/6=

25、X /6= X 10-4m则:S = MmaJ W=X 10-4)= <§ w = (符合要求) 注:为方木的不均匀折减系数。 每根方木抗剪计算贝q: T=QSm q0Imb 2Imb21.09 O.9 Z8!251。40.949 MPa<XT=X =2 2.8125105 0.1符合要求。 每根方木挠度计算 方木的惯性矩 l=(bh 3)/12= X /12= X 10-5m则方木最大挠度:46-5-4fma=(5/384) X (qL )/(EI): =(5/384) XX /( 9 X 10 XX 10) =X 10 m3< 1/400=400= X 10-

26、m故,挠度满足要求。墩顶实心段(墩顶两侧2m范围内)截面立杆顶托上顺桥向采用 10X 15cm规格的方木,顺桥向方木跨距60cm横桥向间隔60cm布置,根据前受力布置图进行方木受力分析计算如下:每根方木抗弯计算q = (q i+ q 2+ q 3+ q 4)x B= +X =mMf= (1/8) qL 2=(1/8) xx=mW=(bh)/6= x 16= x 10-4m则:S = Mma/ W=X 10-4)= <§ w = (符合要求)。注:为方木的不均匀折减系数。 每根方木抗剪计算贝y: T = QSm q0Imb 2Imb34.47 O.6 2.8525 104 1.0

27、33 MPa<xCT =x =2 2.8125105 0.1符合要求。 每根方木挠度计算 方木的惯性矩 I=(bh 3)/12= x /12= x 10-5m则方木最大挠度:fma=(5/384) x (qL4)/(EI) : =(5/384) xx /( 9 x 106xx 10-5): =x 10-4m3< 1/400=400= x 10- m故,挠度满足要求。箱梁底模板计算箱梁底模采用优质竹胶板,铺设在支架立杆顶托上顺桥向方木上的横桥向方木上。其中I - I、II- II截面范围内横桥向方木按间距布置,其余部分横桥向方木按间距布置。取各种布置情况下最不利位置进行受力分析,并对

28、受力结构进行简化(偏于安全)通过前面分析计算及布置方案,在桥墩两侧26m处,横桥向方木布置间距为(净距)时,为底模板荷载最不利位置,则有:竹胶板弹性模量E= 7500MPa每米竹胶板的惯性矩l=(bh 3)/12= X /12= X 10-7mX =m0.119KN m(1) 模板厚度计算q=( q i+ q2+ q3+ q4)l=+2 2rmi “ q l10.545 0.3则:MiaF 一 8 8模板需要的截面模量:W=0.1193W 0.90.9 6.0 103-522.2 10 mXX +=模板的宽度为,根据W b得h为:h=秤 f 22 105 0.0113m 11.3mm因此,模板

29、采用15mn厚规格的竹胶板。(2) 模板刚度验算44"為 128第二:10 7 6.2 10-4m VX 400mX 10-4m故,挠度满足要求。支架底座承载力计算立杆承受荷载计算I-I截面处:跨中18m范围内,间距为90X90cm布置立杆时,每根立杆上荷载为:N= aX bX q= aX bX (q1+q2+q3+q4+q5)n-n截面处:桥墩两侧26m范围内,间距为60X90cm布置立杆时,每根立杆上荷载为:N= aX bX q= aX bX (q1+q2+q3+q4+q5)XX +=m-m截面处:在桥墩旁两侧各 2m范围内,间距为60X 60cm布置立杆时,每根立杆上荷载为:N

30、= aX bX q= aX bX (q1+q2+q3+q4+q5)XX +=立杆底托验算立杆底托验算:N < R通过前面立杆承受荷载计算,每根立杆上荷载最大值为跨中截面I-I横截面处间距90 X 90cm布置的立杆,即:N= aX bX q= aX bX (q1+q2+q3+q4+q5)XX +=底托承载力(抗压)设计值,一般取 Rd =40KN;得:V 40KN,立杆底托符合要求。(3)立杆地基承载力验算表1:标准贯入试验粘质土地基容许承载力(Kpa)试验锤击数(击/30)cm35791113151719f k(Kpa)105145190235280325370435515K调整系数;

31、混凝土基础系数为根据经验及试验,将地面整平(斜坡地段做成台阶)并采用重型压路机碾压密实(压实度90%),达到要求后,再填筑50cm厚的隧道弃渣,并分层填筑,分层碾压,使压实度达到95%以上后,地基承载力可达到f k= 190250Kpa(参考建筑施工计算手册。立杆地基承载力验算: N < K- f kAd式中:N为脚手架立杆传至基础顶面轴心力设计值;2A为立杆底座面积 Ad=15cmX 15cm=225cm按照最不利荷载考虑,立杆底拖下砼基础承载力:N 25.56 1136 KPa < f=5800KPa,底托下砼基础承载力满足要求。Ad0.0225cd底托坐落在砼基础上(按照10

32、cm厚计算),按照力传递面积计算:A=(2 XX tg450+2=f k= 0=220 KPaK调整系数;混凝土基础系数为按照最不利荷载考虑:N = =208< K f k= X 220KPa A经过计算,基底整平压实后采用标准贯入试验检测地基承载力。基础处理时填土石混渣或建筑拆迁废渣,并用压路机压实后,检测压实度达到,如压实度达到95%上,则同理地基承载力满足要求。如巨粒土以及含有砖头、砼块、块石等的粘质土,不适应做 标准贯入试验或对检测结果尚有疑问时,则应再做平板荷载试验。确认地基承载力符合 设计要求后,才能开始放样,摆放脚手架,在其上开始搭设脚手架。支架预留门洞计算门洞临时墩采用加密脚手架结构,与现状海湖路行车方向平行,上设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论