几何图形变换压轴题(共17页)_第1页
几何图形变换压轴题(共17页)_第2页
几何图形变换压轴题(共17页)_第3页
几何图形变换压轴题(共17页)_第4页
几何图形变换压轴题(共17页)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上下载试卷文档前说明文档:1. 试题左侧二维码为该题目对应解析;2. 请同学们独立解答题目,无法完成题目或者对题目有困惑的,扫描二维码查看解析,杜绝抄袭;3. 只有老师通过组卷方式生成的二维码试卷,扫描出的解析页面才有“求老师讲解”按钮,菁优网原有的真题试卷、电子书(习题集)上的二维码试卷扫出的页面无此按钮。学生点击该按钮以后,下载试卷教师可查看被点击的相关统计数据。4. 自主组卷的教师使用该二维码试卷后,可在“菁优网->我的空间->我的收藏->我的下载”处点击图标查看学生扫描的二维码统计图表,以便确定讲解重点。5. 在使用中有任何问题,欢迎在“意见反

2、馈”提出意见和建议,感谢您对菁优网的支持。2015年04月02日几何图形变换压轴题(扫描二维码可查看试题解析)一解答题(共24小题) 1(2014宿迁)如图,已知BAD和BCE均为等腰直角三角形,BAD=BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:ACN为等腰直角三角形;(3)将图1中BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由 2(2014重庆)已知:如图

3、,在矩形ABCD中,AB=5,AD=,AEBD,垂足是E点F是点E关于AB的对称点,连接AF、BF(1)求AE和BE的长;(2)若将ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度)当点F分别平移到线段AB、AD上时,直接写出相应的m的值(3)如图,将ABF绕点B顺时针旋转一个角(0°180°),记旋转中的ABF为ABF,在旋转过程中,设AF所在的直线与直线AD交于点P,与直线BD交于点Q是否存在这样的P、Q两点,使DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由 3(2014天津)在平面直角坐标系中,O为原点,点A(

4、2,0),点B(0,2),点E,点F分别为OA,OB的中点若正方形OEDF绕点O顺时针旋转,得正方形OEDF,记旋转角为()如图,当=90°时,求AE,BF的长;()如图,当=135°时,求证AE=BF,且AEBF;()若直线AE与直线BF相交于点P,求点P的纵坐标的最大值(直接写出结果即可) 4(2014贵阳)如图,将一副直角三角形拼放在一起得到四边形ABCD,其中BAC=45°,ACD=30°,点E为CD边上的中点,连接AE,将ADE沿AE所在直线翻折得到ADE,DE交AC于F点若AB=6cm(1)AE的长为cm;(2)试在线段AC上确定一点P,使得

5、DP+EP的值最小,并求出这个最小值;(3)求点D到BC的距离 5(2014武汉模拟)如图,在RtABC中,C=90°,AC=6,BC=8动点P从点A开始沿折线ACCBBA运动,点P在AC,CB,BA边上运动的速度分别为每秒3,4,5 个单位直线l从与AC重合的位置开始,以每秒个单位的速度沿CB方向平行移动,即移动过程中保持lAC,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动(1)当t=3秒时,点P走过的路径长为;当t=秒时,点P与点E重合;当t=秒时,PEAB;(2)当点P在AC边上运动时,将PEF绕

6、点E逆时针旋转,使得点P的对应点M落在EF上,点F的对应点记为点N,当ENAB时,求t的值;(3)当点P在折线ACCBBA上运动时,作点P关于直线EF的对称点,记为点Q在点P与直线l运动的过程中,若形成的四边形PEQF为菱形,请直接写出t的值 6(2014春青山区期末)已知正方形ABCD和正方形EBGF共顶点B,连AF,H为AF的中点,连EH,正方形EBGF绕点B旋转(1)如图1,当F点落在BC上时,求证:EH=FC;(2)如图2,当点E落在BC上时,连BH,若AB=5,BG=2,求BH的长;(3)当正方形EBGF绕点B旋转到如图3的位置时,求的值 7(2013达州)通过类比联想、引申拓展研究

7、典型题目,可达到解一题知一类的目的下面是一个案例,请补充完整原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,EAF=45°,连接EF,则EF=BE+DF,试说明理由(1)思路梳理AB=AD,把ABE绕点A逆时针旋转90°至ADG,可使AB与AD重合ADC=B=90°,FDG=180°,点F、D、G共线根据,易证AFG,得EF=BE+DF(2)类比引申如图2,四边形ABCD中,AB=AD,BAD=90°点E、F分别在边BC、CD上,EAF=45°若B、D都不是直角,则当B与D满足等量关系时,仍有EF=BE+DF(3)联想拓展

8、如图3,在ABC中,BAC=90°,AB=AC,点D、E均在边BC上,且DAE=45°猜想BD、DE、EC应满足的等量关系,并写出推理过程 8(2013临沂)如图,矩形ABCD中,ACB=30°,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别与边AB,BC所在的直线相交,交点分别为E,F(1)当PEAB,PFBC时,如图1,则的值为;(2)现将三角板绕点P逆时针旋转(0°60°)角,如图2,求的值;(3)在(2)的基础上继续旋转,当60°90°,且使AP:P

9、C=1:2时,如图3,的值是否变化?证明你的结论 9(2013盐城)阅读材料如图,ABC与DEF都是等腰直角三角形,ACB=EDF=90°,且点D在AB边上,AB、EF的中点均为O,连结BF、CD、CO,显然点C、F、O在同一条直线上,可以证明BOFCOD,则BF=CD解决问题(1)将图中的RtDEF绕点O旋转得到图,猜想此时线段BF与CD的数量关系,并证明你的结论;(2)如图,若ABC与DEF都是等边三角形,AB、EF的中点均为O,上述(1)中的结论仍然成立吗?如果成立,请说明理由;如不成立,请求出BF与CD之间的数量关系;(3)如图,若ABC与DEF都是等腰三角形,AB、EF的中

10、点均为0,且顶角ACB=EDF=,请直接写出的值(用含的式子表示出来) 10(2013济南)如图1,在ABC中,AB=AC=4,ABC=67.5°,ABD和ABC关于AB所在的直线对称,点M为边AC上的一个动点(重合),点M关于AB所在直线的对称点为N,CMN的面积为S(1)求CAD的度数;(2)设CM=x,求S与x的函数表达式,并求x为何值时S的值最大?(3)S的值最大时,过点C作ECAC交AB的延长线于点E,连接EN(如图2),P为线段EN上一点,Q为平面内一点,当以M,N,P,Q为顶点的四边形是菱形时,请直接写出所有满足条件NP的长解:(1)AB=AC,ABC=67.5

11、6;,ACB=ABC=67.5°,CAB=180°-67.5°-67.5°=45°,ABD和ABC关于AB所在的直线对称,DAB=CAB=45°,CAD=45°+45°=90°(2)由(1)知:ANAM,点M、N关于AB所在直线对称,AM=AN,CM=x,AN=AM=4-x,(3)CEAC,ECA=90°,CAB=45°,CEA=EAC=45°,CE=AC=4,在RtECA中,AC=EC=4,由勾股定理得:AM=AN,CAB=DAB,AOMN,MO=NO,在RtMAN中,AM

12、=AN=4-2=2,由勾股定理得:MN= MO=NO=  ;以MN为一边时,以N为圆心,以MN为半径画弧交NE于P,此时NP=MN=2 2 ;以MN为一边时,过M作MZNE于Z,则PZ=NZ,AEMN,EON=MZN=90°,ENO=MNZ,ENOMNZ,  11(2013义乌市)小明合作学习小组在探究旋转、平移变换如图ABC,DEF均为等腰直角三角形,各顶点坐标分别为A(1,1),B(2,2),C(2,1),D(,0),E(2,0),F(,)(1)他们将ABC绕C点按顺时针方向旋转45°得到A1B1C1请你写出点

13、A1,B1的坐标,并判断A1C和DF的位置关系;(2)他们将ABC绕原点按顺时针方向旋转45°,发现旋转后的三角形恰好有两个顶点落在抛物线y=2x2+bx+c上,请你求出符合条件的抛物线解析式;(3)他们继续探究,发现将ABC绕某个点旋转45°,若旋转后的三角形恰好有两个顶点落在抛物线y=x2上,则可求出旋转后三角形的直角顶点P的坐标,请你直接写出点P的所有坐标 12(2013镇江)【阅读】如图1,在平面直角坐标系xOy中,已知点A(a,0)(a0),B(2,3),C(0,3)过原点O作直线l,使它经过第一、三象限,直线l与y轴的正半轴所成角设为,将四边形OABC的直角OC

14、B沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ,a【理解】若点D与点A重合,则这个操作过程为FZ,;【尝试】(1)若点D恰为AB的中点(如图2),求;(2)经过FZ45°,a操作,点B落在点E处,若点E在四边形0ABC的边AB上,求出a的值;若点E落在四边形0ABC的外部,直接写出a的取值范围;【探究】经过FZ,a操作后,作直线CD交x轴于点G,交直线AB于点H,使得ODG与GAH是一对相似的等腰三角形,直接写出FZ,a 13(2013广阳区一模)问题情境:如图,正方形ABCD的边长为6,点E是射线BC上的一个动点,连结AE并延长,交射线DC于点F,将ABE沿直线AE翻折

15、,点B坐在点B处自主探究:(1)当=1时,如图1,延长AB,交CD于点M CF的长为; 求证:AM=FM(2)当点B恰好落在对角线AC上时,如图2,此时CF的长为,=拓展运用: (3)当=2时,求sinDAB的值 14(2013聊城模拟)如图,平行四边形ABCD中,ABAC,AB=2,BC=2,对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC、AD于点F、E(1)证明:当旋转角度为90°时,四边形ABFE是平行四边形(2)试说明在旋转过程中,线段AF与EC总是保持相等(3)在旋转过程中四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由,并求出此时AC

16、绕点O顺时针旋转的度数 15(2014济南)如图1,有一组平行线l1l2l3l4,正方形ABCD的四个顶点分别在l1,l2,l3,l4上,EG过点D且垂直l1于点E,分别交l2,l4于点F,G,EF=DG=1,DF=2(1)AE=,正方形ABCD的边长=;(2)如图2,将AEG绕点A顺时针旋转得到AED,旋转角为(0°90°),点D在直线l3上,以AD为边在ED左侧作菱形ABCD,使B,C分别在直线l2,l4上写出BAD与的数量关系并给出证明;若=30°,求菱形ABCD的边长 16(2014南昌)如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合

17、),点F在BC边上(不与点B,C重合)第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依次操作下去(1)图2中的EFD是经过两次操作后得到的,其形状为,求此时线段EF的长;(2)若经过三次操作可得到四边形EFGH请判断四边形EFGH的形状为,此时AE与BF的数量关系是;以中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围;(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由

18、17(2014重庆)如图1,在ABCD中,AHDC,垂足为H,AB=4,AD=7,AH=现有两个动点E,F同时从点A出发,分别以每秒1个单位长度、每秒3个单位长度的速度沿射线AC方向匀速运动,在点E,F的运动过程中,以EF为边作等边EFG,使EFG与ABC在射线AC的同侧,当点E运动到点C时,E,F两点同时停止运动,设运动时间为t秒(1)求线段AC的长;(2)在整个运动过程中,设等边EFG与ABC重叠部分的面积为S,请直接写出S与t之间的函数关系式,并写出相应的自变量t的取值范围;(3)当等边EFG的顶点E到达点C时,如图2,将EFG绕着点C旋转一个角度(0°360°),在

19、旋转过程中,点E与点C重合,F的对应点为F,G的对应点为G,设直线FG与射线DC、射线AC分别相交于M,N两点试问:是否存在点M,N,使得CMN是以MCN为底角的等腰三角形?若存在,请求出CM的长度;若不存在,请说明理由 18(2013重庆)已知:如图,在平行四边形ABCD中,AB=12,BC=6,ADBD以AD为斜边在平行四边形ABCD的内部作RtAED,EAD=30°,AED=90°(1)求AED的周长;(2)若AED以每秒2个单位长度的速度沿DC向右平行移动,得到A0E0D0,当A0D0与BC重合时停止移动,设运动时间为t秒,A0E0D0与BDC重叠的面积为S,请直接

20、写出S与t之间的函数关系式,并写出t的取值范围;(3)如图,在(2)中,当AED停止移动后得到BEC,将BEC绕点C按顺时针方向旋转(0°180°),在旋转过程中,B的对应点为B1,E的对应点为E1,设直线B1E1与直线BE交于点P、与直线CB交于点Q是否存在这样的,使BPQ为等腰三角形?若存在,求出的度数;若不存在,请说明理由 19(2013梅州)用如图,所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:探究一:将以上两个三角形如图拼接(BC和ED重合),在BC边上有一动点P(1)当点P运动到CFB的角平分线上时,连接AP,求线段AP的长;(2

21、)当点P在运动的过程中出现PA=FC时,求PAB的度数探究二:如图,将DEF的顶点D放在ABC的BC边上的中点处,并以点D为旋转中心旋转DEF,使DEF的两直角边与ABC的两直角边分别交于M、N两点,连接MN在旋转DEF的过程中,AMN的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由 20(2013春崇川区校级期末)在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图)(1)求边OA在旋转过程中所

22、扫过的面积; (2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)试证明在旋转过程中,MNO的边MN上的高为定值;(4)设MBN的周长为p,在旋转过程中,p值是否发生变化?若发生变化,说明理由;若不发生变化,请给予证明,并求出p的值 21(2012沙坪坝区模拟)如图(1),在ABCD中,对角线CAAB,且AB=AC=2将ABCD绕点A逆时针旋转45°得到A1B1C1D1,A1D1过点C,B1C1分别与AB、BC交于点P、点Q(1)求四边形CD1C1Q的周长;(2)求两个平行四边形重合部分的四边形APQC的面积;(3)如图(2),将A1B1C1D1以每秒1个单位的速

23、度向右匀速运动,当B1C1运动到直线AC时停止运动设运动的时间为x秒,两个平行四边形重合部分的面积为y,求y关于x的函数关系式,并直接写出相应的自变量x的取值范围 22(2012东至县模拟)如图(1),点E是正方形ABCD边AB上的一动点(不与A、B重合),四边形EFGB也是正方形正方形BEFG、ABCD的边长分别为a、b,且(ab),设AFC的面积为S(1)请证明S为定值;(2)将图(1)中正方形BEFG绕点B顺时针转动45°,如图(2),求S值;(3)当点E处在AB中点(即b=2a时),将正方形BEFG绕点B旋转任意角度,如图(3),请直接写出旋转过程中S的最大值为: 23(2015潍坊一模)如图1,是边长分别为6和4的两个等边三角形纸片ABC和CD1E1叠放在一起(1)操作:固定ABC,将CD1E1绕点C顺时针旋转得到CDE,连接

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论