铝合金的应用领域及发展方向_第1页
铝合金的应用领域及发展方向_第2页
铝合金的应用领域及发展方向_第3页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、铝合金的主要应用领域及其发展方向一,铝合金简介 以铝为基的合金总称。主要合金元素有铜、硅、镁、锌、锰,次要合金元素 有镍、铁、钛、铬、锂等。铝合金是工业中应用最广泛的一类有色金属结构材料, 在航空、航天、汽车、机械制造、 船舶及化学工业中已大量应用。 铝合金密度低, 但强度比较高,接近或超过优质钢,塑性好,可加工成各种型材,具有优良的导 电性、导热性和抗蚀性,工业上广泛使用,使用量仅次于钢。二,铝合金的分类铝合金按照其性质和应用的不同可划分为普通铝合金, 超高强度铝合金, 耐 热铝合金,铝基复合材料。 其应用的领域各有侧重, 涵盖了铝合金的所有应用领 域。三,铝合金的应用1,典型用途1050

2、食品、化学和酿造工业用挤压盘管,各种软管,烟花粉 1060 要求抗蚀性与成形性均高的场合,但对强度要求不高,化工设备是其 典型用途1100 用于加工需要有良好的成形性和高的抗蚀性但不要求有高强度的零件 部件,例如化工产品、食品工业装置与贮存容器、薄板加工件、深拉或旋压凹形 器皿、焊接零部件、热交换器、印刷板、铭牌、反光器具1145 包装及绝热铝箔,热交换器1199 电解电容器箔,光学反光沉积膜1350 电线、导电绞线、汇流排、变压器带材2011 螺钉及要求有良好切削性能的机械加工产品2014 应用于要求高强度与硬度(包括高温)的场合。飞机重型、锻件、厚 板和挤压材料, 车轮与结构元件, 多级火

3、箭第一级燃料槽与航天器零件, 卡车构 架与悬挂系统零件2017是第一个获得工业应用的2XXX系合金,目前的应用范围较窄,主要为铆钉、通用机械零件、结构与运输工具结构件,螺旋桨与配件2024 飞机结构、铆钉、导弹构件、卡车轮毂、螺旋桨元件及其他种种结构件2036 汽车车身钣金件2048 航空航天器结构件与兵器结构零件2124 航空航天器结构件2218 飞机发动机和柴油发动机活塞,飞机发动机汽缸头,喷气发动机叶轮 和压缩机环2219 航天火箭焊接氧化剂槽,超音速飞机蒙皮与结构零件,工作温度为-270300 C。焊接性好,断裂韧性高,T8状态有很高的抗应力腐蚀开裂能力 2319 焊拉 2219 合金

4、的焊条和填充焊料2618 模锻件与自由锻件。活塞和航空发动机零件2A01工作温度小于等于100C的结构铆钉2A02工作温度200300C的涡轮喷气发动机的轴向压气机叶片2A06工作温度150250C的飞机结构及工作温度 125250°C的航空器结构 铆钉2A10强度比2A01合金的高,用于制造工作温度小于等于100C的航空器结 构铆钉2A11 飞机的中等强度的结构件、 螺旋桨叶片、交通运输工具与建筑结构件。 航空器的中等强度的螺栓与铆钉2A12 航空器蒙皮、隔框、翼肋、翼梁、铆钉等,建筑与交通运输工具结构 件2A14 形状复杂的自由锻件与模锻件2A16工作温度250300C的航天航空

5、器零件,在室温及高温下工作的焊接 容器与气密座舱2A17工作温度225250C的航空器零件2A50 形状复杂的中等强度零件2A60 航空器发动机压气机轮、导风轮、风扇、叶轮等2A70 飞机蒙皮,航空器发动机活塞、导风轮、轮盘等2A80 航空发动机压气机叶片、叶轮、活塞、涨圈及其他工作温度高的零件2A90 航空发动机活塞3003 用于加工需要有良好的成形性能、高的抗蚀性可焊性好的零件部件, 或既要求有这些性能又需要有比1XXX系合金强度高的工作,如厨具、食物和化 工产品处理与贮存装置, 运输液体产品的槽、 罐,以薄板加工的各种压力容器与 管道3004 全铝易拉罐罐身, 要求有比 3003 合金更

6、高强度的零部件, 化工产品生 产与贮存装置,薄板加工件,建筑加工件,建筑工具,各种灯具零部件3105 房间隔断、档板、活动房板、檐槽和落水管,薄板成形加工件,瓶盖、 瓶塞等3A21 飞机油箱、油路导管、铆钉线材等;建筑材料与食品等工业装备等5005 与 3003 合金相似,具有中等强度与良好的抗蚀性。用作导体、炊具、 仪表板、壳与建筑装饰件。阳极氧化膜比 3003合金上的氧化膜更加明亮,并与 6063合金的色调协调一致5050 薄板可作为致冷机与冰箱的内衬板,汽车气管、油管与农业灌溉管; 也可加工厚板、管材、棒材、异形材和线材等5052 此合金有良好的成形加工性能、抗蚀性、可烛性、疲劳强度与中

7、等的 静态强度,用于制造飞机油箱、油管,以及交通车辆、船舶的钣金件,仪表、街 灯支架与铆钉、五金制品等5056 镁合金与电缆护套铆钉、拉链、钉子等;包铝的线材广泛用于加工农 业捕虫器罩,以及需要有高抗蚀性的其他场合5083 用于需要有高的抗蚀性、 良好的可焊性和中等强度的场合, 诸如舰艇、 汽车和飞机板焊接件;需严格防火的压力容器、致冷装置、电视塔、钻探设备、 交通运输设备、导弹元件、装甲等5086 用于需要有高的抗蚀性、 良好的可焊性和中等强度的场合, 例如舰艇、 汽车、飞机、低温设备、电视塔、钻井装置、运输设备、导弹零部件与甲板等5154 焊接结构、贮槽、压力容器、船舶结构与海上设施、运输

8、槽罐5182 薄板用于加工易拉罐盖,汽车车身板、操纵盘、加强件、托架等零部 件5252 用于制造有较高强度的装饰件,如汽车等的装饰性零部件。在阳极氧 化后具有光亮透明的氧化膜5254 过氧化氢及其他化工产品容器5356 焊接镁含量大于 3%的铝 - 镁合金焊条及焊丝5454 焊接结构,压力容器,海洋设施管道5456 装甲板、高强度焊接结构、贮槽、压力容器、船舶材料5457 经抛光与阳极氧化处理的汽车及其他装备的装饰件5652 过氧化氢及其他化工产品贮存容器5657 经抛光与阳极氧化处理的汽车及其他装备的装饰件,但在任何情况下 必须确保材料具有细的晶粒组织5A02 飞机油箱与导管,焊丝,铆钉,船

9、舶结构件5A03 中等强度焊接结构,冷冲压零件,焊接容器,焊丝,可用来代替 5A02 合金5A05 焊接结构件,飞机蒙皮骨架5A06 焊接结构,冷模锻零件,焊拉容器受力零件,飞机蒙皮骨部件5A12 焊接结构件,防弹甲板6005 挤压型材与管材, 用于要求强高大于 6063 合金的结构件, 如梯子、电 视天线等6009 汽车车身板6010 薄板:汽车车身6061 要求有一定强度、 可焊性与抗蚀性高的各种工业结构性, 如制造卡车、 塔式建筑、船舶、电车、夹具、机械零件、精密加工等用的管、棒、形材、板材6063 建筑型材,灌溉管材以及供车辆、台架、家具、栏栅等用的挤压材料6066 锻件及焊接结构挤压

10、材料6070 重载焊接结构与汽车工业用的挤压材料与管材6101 公共汽车用高强度棒材、电导体与散热器材等6151 用于模锻曲轴零件、机器零件与生产轧制环,供既要求有良好的可锻 性能、高的强度,又要有良好抗蚀性之用6201 高强度导电棒材与线材6205 厚板、踏板与耐高冲击的挤压件6262 要求抗蚀性优于 2011和 2017合金的有螺纹的高应力零件6351 车辆的挤压结构件,水、石油等的输送管道6463 建筑与各种器具型材,以及经阳极氧化处理后有明亮表面的汽车装饰 件6A02 飞机发动机零件,形状复杂的锻件与模锻件7005 挤压材料,用于制造既要有高的强度又要有高的断裂韧性的焊接结构, 如交通

11、运输车辆的桁架、杆件、容器;大型热交换器,以及焊接后不能进行固熔 处理的部件;还可用于制造体育器材如网球拍与垒球棒7039 冷冻容器、低温器械与贮存箱,消防压力器材,军用器材、装甲板、 导弹装置7049 用于锻造静态强度与 7079-T6 合金的相同而又要求有高的抗应力腐蚀 开裂勇力的零件, 如飞机与导弹零件起落架液压缸和挤压件。 零件的疲劳性能大致与 7075-T6 合金的相等,而韧性稍高7050 飞机结构件用中厚板、挤压件、自由锻件与模锻件。制造这类零件对 合金的要求是:抗剥落腐蚀、应力腐蚀开裂能力、断裂韧性与抗疲劳性能都高7072 空调器铝箔与特薄带材; 2219、3003、3004、5

12、050、5052、5154、6061、 7075、7475、7178合金板材与管材的包覆层7075 用于制造飞机结构及期货 他要求强度高、抗腐蚀性能强的高应力结构 件、模具制造7175 用于锻造航空器用的高强度结构性。 T736 材料有良好的综合性能,即 强度、抗剥落腐蚀与抗应力腐蚀开裂性能、断裂韧性、疲劳强度都高7178 供制造航空航天器的要求抗压屈服强度高的零部件7475 机身用的包铝的与未包铝的板材,机翼骨架、桁条等。其他既要有高 的强度又要有高的断裂韧性的零部件7A04 飞机蒙皮、螺钉、以及受力构件如大梁桁条、隔框、翼肋、起落架等 2,超高强度铝合金的简介及其主要应用领域和发展 简介:

13、高强度铝合金具有比重小、 强度高、 加工性能好及焊接性能优良等特 点, 被广泛地应用于航空工业及民用工业等领域,尤其在航空工业中占有十分 重要的地位,是航空工业的主要结构材料之一。应用: 1. 超高强铝合金具有密度低、强度高、热加工性能好等优点,是航 空航天领域的主要结构材料。 现代航空航天工业的发展, 对高强铝合金的强度和 综合性能提出了更高的要求。 近年来, 材料工作者通过优化合金的成分设计, 采 用新型的制坯方法、 成形加工及热处理工艺, 研制开发出多种使用性能更好的超 高强铝合金,这些材料既具有 600 MPa 以上的抗拉强度,又能保持较高的韧性 和耐腐蚀性,且成本较低, 在很多领域取

14、代了昂贵的钛合金, 成为目前军用和民 用飞机等交通运输工具中不可缺少的重要轻质结构材料。 超高强铝合金正成为世 界各国结构材料开发的热点之一。早在 20世纪 30年代,人们就开始研究 Al-Zn-Mg-Cu 系合金,但由于该系 合金存在严重的腐蚀现象而未得到实际应用。 20 世纪中期,通过在合金中添加 Mn,Cr ,Ti 等微量元素提高抗应力腐蚀性能, 美国、前苏联相继开发出 7075 合 金和 B95 高强铝合金, 用于制造飞机部件, 并着手研究超高强铝合金。 1956 年, 前苏联学者在深入研究 Al-Zn-Mg-Cu 系合金的基础上, 研制出世界上第 1 种超 高强度铝合金卩部分超高强铝

15、合金。继而通过提高合金纯度,降低合金元素含量开发出B96 u的改型合金B961和B96卩2。近年来,又改变时效制度, 采用过时效态代替峰值时又投入大量人力物力研究新的热处理状态, 提高了合金 的耐腐蚀性和断裂韧性,且静强度降低、幅度小,因而应用领域广泛。 1972 年, 美国铝业公司通过降低 7075 合金中的 Fe 和 Si 等杂质含量,调整合金元素, 并在合金中添加锆代替铬,开发出了 7050 合金;1978 年,对 7050 合金的成 分进行微调,成功研制了 7150 合金 , 并将 其加工成 T651 及 T6151 态厚板 和挤压件 , 用于制造 波音 767 、 空中客车 A310

16、 等飞机的上翼结构。为了进 一步提高机体材料的性能, 20 世纪 80 年代末,美国 Alcoa 公司开发出 T77 处理工艺,并应用于 IM/ 7150 合金,使之具有 T6 态强度和 T73 态抗腐蚀性 能。 7150T77 合金板材和挤压材目前已大量用于制造飞机框架、舱壁等结构件。 随后,通过提高合金中的锌含量, 进一步开发出超高强度的 IM/ 7055T77 合金 , 用于制造波音 777 的上翼蒙皮和龙骨梁。目前,一些国家仍在进行 IM/7050T74厚板 、 7055T77 板材的应用研究。开发快速凝固 / 粉末冶金 ( RS/ PM) 制备 工艺,发展 RS/ PM 铝合金。 2

17、0 世纪 80 年代, 美国 Alcoa 公司采用传统 RS/ PM 制备方法,研制出 PM/ 7090 等。 1992 年, 日本住友轻金属公司采用真空 平流制粉、后续真空压实烧结工艺,在实验室制备出c达700 MPa以上的超高强铝合金。但是,由于传统 RS/ PM 工艺难以制备大尺寸材料,生产成本高,且 合金中锌含量很高,导致粉末烧结困难,因此,采用传统 RS/ PM 工艺生产的超 高强铝合金并未得到实际应用。 20世纪 90 年代初期,随着以喷射成形技术为代 表的新一代RS/ PM工艺走向规模化、实用化,使 RS/ PM工艺生产实用超高强 铝合金材料变为现实。 利用喷射成形技术制备的材料

18、, 除保持了晶粒细小、 组织 均匀、能够抑制偏析等优点外, 由于从合金熔炼到坯件近终成形可一次完成, 减 少了材料在制备过程中被氧化的可能, 缩短了制备流程, 降低了成本, 且易于制 备大尺寸块状材料。到 90 年代末,美国、英国、日本等工业发达国家利用喷射 成形技术开发出了含锌量在8%以上 (最高达14%),抗拉强度c为760810MPa延伸率S为8%13%勺新一代超高强铝合金,用于制造交通运输领域的结 构件及其他高应力结构件。国内超高强铝合金的研究开发起步较晚, 20世纪 80年代初,东北轻合金加 工厂和北京航空材料研究所开始研制 Al-Zn-Mg-Cu 系高强高韧铝合金。 目前,在 普通

19、7XXX系铝合金的生产和应用方面已进入实用化阶段,产品主要包括7075和 7050等合金。20世纪 90年代中期, 北京航空材料研究所采用常规 PM/ 7091、 CW67等合金,其强度与IM/ 7075T6的相当。近来,我国又开发出强度更高的 7A60合金。“九五”期间,北京有色金属研究总院和东北轻合金加工厂开展了仿 高锌含量的喷射成形超高强铝合金的研制开发工作, 他们分别采用喷射沉积和半 连续铸造工艺,制成了各种尺寸的(模)锻件、挤压材,合金的屈服强度已分别 达到750780MPa和630650MP©延伸率则分别达到8%10呀口 4%7%接近 国外 20 世纪低频电磁半连续铸造高

20、合金化超高强铝合金的研究。目前已开发出 低频电磁半连续铸造技术, 该技术不仅可以得到国外高频、 中频或工频电磁铸造 时所获得的晶粒细化、 表面质量改进和抑制开裂的效果, 更重要的是可以使溶质 元素的固溶度大大提高,为高合金化超高强铝合金的制备创造了基本条件。2. 高强度铝合金的导线应用 在国际上,铝镁硅型的高强度铝合 金导线已被使用七十余年的历史,由于它具有的优点和对其生产工艺的不断改 进,使它更具有实际使用价值。 在欧洲,以法国为代表, 在输电线路上大量采用, 占线路总长的绝大部分,日本采用铝合金的输电线路在50%以上;美国和加拿大也有很大的比例;即使东南亚发展中的国家,像印度、印度尼西亚、

21、菲律宾等也 都采用铝合金用于导线输电线路。如果把铝合金绞线与钢芯铝绞线作比较的话, 在相同的单位重量下, 铝合金 导体有直流电阻小、载流量大、拉力大、拉力单重比大等优点;在具有相同载流 量条件下比较,铝合金导线有重量轻、拉力大、拉力单重比更大等优点。兼之铝 合金导线为单一材料的导线, 易安装施工。 它所具有的优点表现在线路建设中可 加大档距,减少杆塔数目,或降低杆高度,总之它能降低工程造价,因此受到电 力部门的欢迎。 铝合金的另一个发展方向是高强度耐热铝合金, 高强度导电铝合 金。当前世界电力工业发展, 一方面是发达国家多数已把国内甚至跨国电网进行 互联,当然需通过大熔炼远距离输电来完成。 这

22、些线路采用新型材料, 减少电能 损耗,延长线路使用寿命。另一方面,发展中国家,像东亚、东南亚和南美地区的国家,大规模的电网建设方兴未艾, 大规模的大容量远距离送电代表着目前的 现状。大容量远距离输电, 架空导线仍以采用大截面的钢芯铝绞线为主, 但为了减 少电能损耗,改善导线的弧垂特性,降低线路造价,铝合金导线开始走上舞台。 在欧洲,以法国为例, 其输电线路的导线绝大多数采用高强度铝合金导线, 它不 仅改善线路质量, 延长导线使用寿命, 同时还降低了线路造价。 在美国铝合金导 线也被作为重要品种来使用。 在日本, 不但为了要输送大容量的电能, 而且由于 土地限制, 将在原有线路上架设新型导线输送

23、更多的容量, 因此耐热铝合金导线 被广泛应用,在输电线路中已超过 50%采用高强度铝合金和耐热铝合金。即使像 印度这样发展中的国家,其超高压输电线路也采用高强度铝合金导线。在大容量远距离的输电线路上, 其导线用量一般都很多, 而且是高电压的主 干线路,因此采用性能优良的原材料制作导线是其发展的一个重要方面, 因此除 大力推广采用目前已能正常批量生产的高强度铝合金导线、铝包钢芯铝绞线以 外,还将着重开发高导电铝,其导电率将由目前的61%IACS提高到63%IACS着重开发超高强度钢线,其强度在 200N/mm型上,这样既能减少电能损耗,又增 大拉力单重比,改善线路的弧垂特性。远距离的输电势必要经

24、过很多复杂的地形与气候条件, 江湖海岛,高山峡谷, 污秽地带,腐蚀性气氛,因而又发展了像大跨越、特大跨越导线、耐腐蚀性防振 动导线,防冰雪导线; 为输送更大容量的倍容量导线, 减少电晕损失的底电晕导 线等,这些特种导线都是结合实际情况而制作的, 但它为线路建设起到很大的作 用。我国高强度铝合金导线的年产量不超过 1 万吨,国内实际用量比生产少得 多,往往是为国外线路工程而生产, 因此,在国内的实际线路中采用铝合金导线 的尚不足 1%,在先进国家大量采用高强度铝合金导线时,我国的应用状况实在 微不足道了。 尽管我国已能研制生产多重特种导线, 并少量获得使用, 可是在主 干线的重要工程中却多数采用

25、国外产品,这使得特种导线的应用常常受阻。架空导线是高压输变电设别的重要组成部分。 作为架空线导体, 除了电工铝 以外,最重要的是高强度铝合金。作为架空线用铝合金,首先是提高强度,即现 在常用的牌号有Aldrey、6201、LHA1等,以后又提出要提高耐热性能,因此开 发出高强度耐热铝合金、 高导电耐热铝合金; 又为了获得耐热高温和耐热高导电 性能良好的铝合金,开发出高强度耐热铝合金、高导电耐热铝合金。1958 年我国开始研究铝合金作为架空导线的导体,然而工艺未过关而难以 推广,1965年起开始研制的Al-Mg-Si高强度铝合金线,其性能达到IEC标准中 规定的各项参数,即单线的抗拉强度c b&

26、gt; 294N/mm2延伸率34%电阻率p 20< 0.0328 Q ? mm2制成架空线的性能也均符合要求,1965年曾在上海的奉贤 海边架设运行线路,在 20 年后调查时仍在安全运行。如今,我国二滩电站的电 力送出工程便采用高强度铝合金导线。架空导线铝合金导体, 除高强度铝合金外, 主要的发展方向是耐热、 高强度 耐热,它的出现与应用,标志着上了一个新的台阶。耐热铝合金导线是输变电网中大容量线路用的新型导线, 耐热铝合金有二个 品种,其导电率分别为58%IACS和60%IACS均高于高强度铝合金的52.5%IACS), 它具有良好的高温特性,能长期在 150C下使用(电工铝导体的长

27、期使用温度为 70C),因此在相同截面下,耐热铝合金导线的载流量较铝导线提高1倍,在大容量线路输电时可以减少导线的相分裂根数,提高安全可靠性。耐热铝合金导线的强度低于高强度铝合金导线, 只与电工铝导体相同, 高强 度耐热铝合金比耐热铝合金的强度高 35-63%,能用作大跨越导线,克服大跨越 导线容量偏低的缺点。对于作为输电线路用导线, 除了满足一定载流量, 它需要足够的铝截面, 保 证导线的直流电阻达到规定值以外, 最主要的是抗拉力和单位长度质量, 以及他 们的比值。 从表 1可以看出使用铝合金绞线对线路有好处, 可以减少弧垂量, 降 低杆塔高度,或可以增加杆塔间距。此外,它有较强的过载能力,

28、因此在经过覆 冰地段(如覆冰厚度为20cmr 30cm时),其线路的综合造价可以适当降低;在通 过山地,由于地形高低不平,起伏较大,杆塔塔位较难安排,如采用 (钢芯)铝合 金绞线,线路建设就更经济了。3,耐热性铝合金的简介及其应用领域和发展简介:能在较高温度下使用而不软化的铝合金。提高铝合金热强性的主要 途径是固溶强化、过剩相强化和晶界强化等。为此,常加入钼、镍、铜、锂、铁 或稀土元素,以形成热稳定性较好的过剩相Al2CuMg, Al6Cu3Ni , Al2FeSi ,AI9FeNi,AI2CuLi,AI6Mn, AI3Ti,AI3Fe, AI4Ce4, AI2Cu4Mg5Si4等。根据加 工

29、工艺不同可分为耐热变形铝合金 (包括耐热锻铝合金、 耐热硬铝合金) 和耐热 铸造铝合金。主要用作在 150300C工作的零件,如涡轮压缩机叶片盘、焊接 容器、活塞等。主要用途 可以用于架空输配电线路上面,连续使用温度可以达到 90度, 载流量能力高,防腐性能好。开发快凝耐热铝合金的最终目的是取代飞机零件中的钛合金。近些年来的研究成果表明, 这方面的工作已取得了很大进展, 快凝耐热铝合金的某些性能 已相当或超过了部分钛合金的。例如: AI-Fe-Zr-V 的比强度与 Ti-6AI-4V 相当, 而 Al-Fe-Ce 在150C和230E时屈服强度分别为 449MPa和391MPa已超过 Ti-6

30、AI-4V 合金的,再加上这些新型合金密度低,价格便宜,一般不含有贵重的 战略元素,已经有可能在 230350E的温度范围内与常规的钛合金竞争,甚至 取代钛合金。 目前,快凝耐热铝合金已成功地用于制造气体涡轮发动机的压缩翼 片和叶片, 以及涡轮和散热片等部件, 还可以用于制造火箭和宇宙飞船上的某些 构件。当快凝耐热铝合金用于制造飞机构件时,造价一般只是钛合金的30%50%,而飞机重量却可以减轻 15%左右。如果进一步提高其耐热性能,应用范围 还将扩大。发展方向: 快凝耐热铝合金目前存在的问题主要有以下几方面。性能方 面:1、快凝耐热铝合金的疲劳强度、蠕变强度还不够高,这与粉末冶金过程中 原始颗

31、粒界面和氧化物有关; 2、快凝耐热铝合金的断裂韧性也不甚理想,尤其 是存在明显的中温脆性, 引起脆性的原因还待进一步研究。 成本方面: 采用粉末 冶金工艺的快凝耐热铝合金, 虽然性能比熔铸合金优越, 但制造成本偏高却成了 该合金面临的挑战。快凝耐热铝合金今后的研究方向将主要集中在以下几方面: 1、发展低成本 的新型快凝工艺。由于喷射沉积快凝工艺相对RS/PMX艺而言,生产工序简化,避免了原始粉末颗粒界面氧化问题,可使合金的韧性得到提高,生产成本降低。 因此,应进一步完善喷射沉积快凝工艺,使其应用于实际生产。2、进一步研究合金的耐热机理,包括过固溶的基体在受热过程中的作用。 3、研究引起合金中

32、温脆性的原因及解决措施,进一步提高合金的韧性。四,铝基复合材料简介及应用领域和发展方向简介: 复合材料是应现代科学发展需求而涌现出的具有强大生命力的材 料,它由两种或两种以上性质不同的材料通过各种工艺手段复合而成。 复合材料 可分为三类:聚合物基复合材料(PMC)、金属基复合材料(MMC)陶瓷基复合 材料(CMC)。金属基复合材料基体主要是铝、镍、镁、钛等。铝在制作复合材 料上有许多特点 ,如质量轻、密度小、可塑性好 , 铝基复合技术容易掌握 , 易于加 工等。此外 ,铝基复合材料比强度和比刚度高 ,高温性能好 ,更耐疲劳和更耐磨 , 阻尼性能好 , 热膨胀系数低。同其他复合材料一样 , 它能

33、组合特定的力学和物理性 能, 以满足产品的需要。因此 , 铝基复合材料已成为金属基复合材料中最常用的、 最重要的材料之一。按照增强体的不同 , 铝基复合材料可分为纤维增强铝基复合 材料和颗粒增强铝基复合材料。纤维增强铝基复合材料具有比强度、比模量高 , 尺寸稳定性好等一系列优异性能 ,但价格昂贵 ,目前主要用于航天领域 ,作为航天 飞机、人造卫星、 空间站等的结构材料。 颗粒增强铝基复合材料可用来制造卫星 及航天用结构材料、飞机零部件、金属镜光学系统、汽车零部件 ; 此外还可以用 来制造微波电路插件、 惯性导航系统的精密零件、 涡轮增压推进器、 电子封装器 件等铝基复合材料的性能铝基复合材料的

34、性能取决于基体合金和增强物的特性、 含量、 分布等。 与基 体合金相比 , 铝基复合材料具有许多优良的性能。1 低密度2 良好的尺寸稳定性3 强度、模量与塑性增强体的加入在提高铝基复合材料强度和模量的同时 , 降低了塑性。4 耐磨性高的耐磨性是铝基复合材料 (SiC 、 Al2O3 增强) 的特点之一。5 疲劳与断裂韧性铝基复合材料的疲劳强度一般比基体金属高 , 而断裂韧性却下降。影响铝 基复合材料疲劳性能和断裂的主要因素有 : 增强物与基体的界面结合状态、基体 与增强物本身的特性和增强物在基体中的分布等。6 热性能增强体和基体之间的热膨胀失配在任何复合材料中都难以避免 , 为了有效 降低复合

35、材料的热膨胀系数 ,使其与半导体材料或陶瓷基片保持热匹配 , 常选用 低膨胀的 合金作为基体和采用不同粒径的颗粒制备高体积分数的复合材料。应用领域: 1 在汽车领域的应用 铝基复合材料在汽车工业的应用 研究起步最早。上个世纪 年代, 日本丰田公司成功地用 复合材料制备了发动机 活塞。美国的研制出用颗粒增强铝基复合材料制造汽车制动盘 , 使其重量减轻了 , 而且提高了耐磨性能 ,噪音明显减小 ,摩擦散热快;同时该公司还用颗粒增强铝基 复合材料制造了汽车发动机活塞和齿轮箱等汽车零部件。 用复合材料制成的汽车 齿轮箱在强度和耐磨性方面均比铝合金齿轮箱有明显的提高。 铝合金复合材料也 可以用来制造刹车转子、刹车活塞、刹车垫板、卡钳等刹车系统元件。铝基复合 材料还可用来制造

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论