【步步高】2015年高考数学(浙江专用,理科)二轮专题复习讲练:专题三第2讲]_第1页
【步步高】2015年高考数学(浙江专用,理科)二轮专题复习讲练:专题三第2讲]_第2页
【步步高】2015年高考数学(浙江专用,理科)二轮专题复习讲练:专题三第2讲]_第3页
【步步高】2015年高考数学(浙江专用,理科)二轮专题复习讲练:专题三第2讲]_第4页
【步步高】2015年高考数学(浙江专用,理科)二轮专题复习讲练:专题三第2讲]_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第2讲数列求和及综合应用考情解读高考对本节知识主要以解答题的形式考查以下两个问题:(1)以递推公式或图、表形式给出条件,求通项公式,考查用等差、等比数列知识分析问题和探究创新的能力,属中档题(2)通过分组、错位相减等转化为等差或等比数列的求和问题,考查等差、等比数列求和公式及转化与化归思想的应用,属中档题1数列求和的方法技巧(1)分组转化法有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并(2)错位相减法这是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列an·bn的前n项和,其中an,b

2、n分别是等差数列和等比数列(3)倒序相加法这是在推导等差数列前n项和公式时所用的方法,也就是将一个数列倒过来排列(反序),当它与原数列相加时若有公式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和(4)裂项相消法利用通项变形,将通项分裂成两项或n项的差,通过相加过程中的相互抵消,最后只剩下有限项的和这种方法,适用于求通项为的数列的前n项和,其中an若为等差数列,则.常见的裂项公式:;();();()2数列应用题的模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等

3、比模型,这个固定的数就是公比(3)混合模型:在一个问题中同时涉及等差数列和等比数列的模型(4)生长模型:如果某一个量,每一期以一个固定的百分数增加(或减少),同时又以一个固定的具体量增加(或减少)时,我们称该模型为生长模型如分期付款问题,树木的生长与砍伐问题等(5)递推模型:如果容易找到该数列任意一项an与它的前一项an1(或前n项)间的递推关系式,我们可以用递推数列的知识来解决问题.热点一分组转化求和例1等比数列an中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.第一列第二列第三列第一行3210第二行6414第三行9818(1)求数

4、列an的通项公式;(2)若数列bn满足:bnan(1)nln an,求数列bn的前n项和Sn.思维启迪(1)根据表中数据逐个推敲确定an的通项公式;(2)分组求和解(1)当a13时,不合题意;当a12时,当且仅当a26,a318时,符合题意;当a110时,不合题意因此a12,a26,a318,所以公比q3.故an2·3n1 (nN*)(2)因为bnan(1)nln an2·3n1(1)nln(2·3n1)2·3n1(1)nln 2(n1)ln 32·3n1(1)n(ln 2ln 3)(1)nnln 3,所以Sn2(133n1)111(1)n&#

5、183;(ln 2ln 3)123(1)nnln 3.当n为偶数时,Sn2×ln 33nln 31;当n为奇数时,Sn2×(ln 2ln 3)ln 33nln 3ln 21.综上所述,Sn思维升华在处理一般数列求和时,一定要注意使用转化思想把一般的数列求和转化为等差数列或等比数列进行求和,在求和时要分析清楚哪些项构成等差数列,哪些项构成等比数列,清晰正确地求解在利用分组求和法求和时,由于数列的各项是正负交替的,所以一般需要对项数n进行讨论,最后再验证是否可以合并为一个公式已知数列an中,a11,anan1()n(nN*)(1)求证:数列a2n与a2n1(nN*)都是等比数列

6、;(2)若数列an的前2n项和为T2n,令bn(3T2n)·n·(n1),求数列bn的最大项(1)证明因为anan1()n,an1an2()n1,所以.又a11,a2,所以数列a1,a3,a2n1,是以1为首项,为公比的等比数列;数列a2,a4,a2n,是以为首项,为公比的等比数列(2)解由(1)可得T2n(a1a3a2n1)(a2a4a2n)33()n,所以bn3n(n1)()n,bn13(n1)(n2)()n1,所以bn1bn3(n1)()n(n)3(n1)()n1(2n),所以b1<b2b3>b4>>bn>,所以(bn)maxb2b3.热

7、点二错位相减法求和例2设数列an的前n项和为Sn,已知a11,Sn12Snn1(nN*),(1)求数列an的通项公式;(2)若bn,数列bn的前n项和为Tn,nN*,证明:Tn<2.思维启迪(1)n>1时,Sn2Sn1n两式相减得an的递推关系式,然后构造数列求通项;(2)先利用错位相减法求出Tn,再放缩(1)解Sn12Snn1,当n2时,Sn2Sn1n,an12an1,an112(an1),即2(n2),又S22S12,a1S11,a23,2,当n1时,式也成立,an12n,即an2n1(nN*)(2)证明an2n1,bn,Tn,Tn,两式相减,得Tn2()2<2.思维升华

8、错位相减法求数列的前n项和是一种重要的方法在应用这种方法时,一定要抓住数列的特征,即数列的项可以看作是由一个等差数列和一个等比数列对应项相乘所得数列的求和问题设数列an满足a12,an1an3·22n1.(1)求数列an的通项公式;(2)令bnnan,求数列bn的前n项和Sn.解(1)由已知得,当n1时,an1(an1an)(anan1)(a2a1)a13(22n122n32)222(n1)1.而a12,符合上式,所以数列an的通项公式为an22n1.(2)由bnnann·22n1知Sn1·22·233·25n·22n1.从而22&#

9、183;Sn1·232·253·27n·22n1.,得(122)Sn2232522n1n·22n1,即Sn(3n1)22n12热点三裂项相消法求和例3已知等差数列an,公差d>0,前n项和为Sn,S36,且满足a3a1,2a2,a8成等比数列(1)求an的通项公式;(2)设bn,求数列bn的前n项和Tn的值思维启迪(1)利用方程思想可确定a,d,写出an;(2)利用裂项相消法求Tn.解(1)由S36,得a22.a3a1,2a2,a8成等比数列,(2d)·(26d)42,解得d1或d,d>0,d1.数列an的通项公式为ann

10、.(2)Tn(1)()()()()().思维升华裂项相消法适合于形如形式的数列,其中an为等差数列已知等差数列an是递增数列,且满足a4·a715,a3a88.(1)求数列an的通项公式;(2)令bn(n2),b1,求数列bn的前n项和Sn.解(1)根据题意a3a88a4a7,a4·a715,所以a4,a7是方程x28x150的两根,且a4<a7,解得a43,a75.设数列an的公差为d,由a7a4(74)·d,得d.故等差数列an的通项公式为ana4(n4)·d3(n4)·.(2)当n2时,bn(),又b1(1),所以Snb1b2bn(

11、1)(1).即数列bn的前n项和Sn.热点四数列的实际应用例4自从祖国大陆允许台湾农民到大陆创业以来,在11个省区设立了海峡两岸农业合作试验区和台湾农民创业园,台湾农民在那里申办个体工商户可以享受“绿色通道”的申请、受理、审批一站式服务,某台商第一年年初到大陆就创办了一座120万元的蔬菜加工厂M,M的价值在使用过程中逐年减少,从第二年到第六年,每年年初M的价值比上年年初减少10万元,从第七年开始,每年年初M的价值为上年年初的75%.(1)求第n年年初M的价值an的表达式;(2)设An,若An大于80万元,则M继续使用,否则须在第n年年初对M更新,证明:必须在第九年年初对M更新思维启迪(1)根据

12、题意,当n6时,数列an是等差数列,当n7时,数列an是等比数列,分别写出其通项公式,然后进行合并即可;(2)先对n进行分类,表示出An,利用数列的单调性质确定其最佳项,并与80比较大小,确定n的值(1)解当n6时,数列an是首项为120,公差为10的等差数列,故an12010(n1)13010n,当n7时,数列an从a6开始的项构成一个以a61306070为首项,以为公比的等比数列,故an70×()n6,所以第n年初M的价值an(2)证明设Sn表示数列an的前n项和,由等差数列和等比数列的求和公式,得当1n6时,Sn120n5n(n1),An1205(n1)1255n95>8

13、0,当n7时,由于S6570,故Sn570(a7a8an)57070××4×1()n6780210×()n6.因为an是递减数列,所以An是递减数列因为An,A882.734>80,A976.823<80,所以必须在第九年年初对M更新思维升华解答数列应用题,与函数应用题的求解过程类似,一般要经过三步:(1)建模,首先要认真审题,理解实际背景,理清数学关系,把应用问题转化为数列问题;(2)解模,利用所学的数列知识,解决数列模型中的相关问题;(3)释模,把已解决的数列模型中的问题返回到实际问题中去,与实际问题相对应,确定问题的结果(1)设某商品一

14、次性付款的金额为a元,以分期付款的形式等额地分成n次付清,若每期利率r保持不变,按复利计算,则每期期末所付款是()A.(1r)n元B.元C.(1r)n1元D.元(2)学校餐厅每天供应500名学生用餐,每星期一有A,B两种菜可供选择调查资料表明,凡是在星期一选A种菜的,下星期一会有20%改选B种菜;而选B种菜的,下星期一会有30%改选A种菜用an,bn分别表示在第n个星期的星期一选A种菜和选B种菜的人数,如果a1300,则a10为()A350 B300C400 D450答案(1)B(2)B解析(1)设每期期末所付款是x元,则各次付款的本利和为x(1r)n1x(1r)n2x(1r)n3x(1r)x

15、a(1r)n,即x·a(1r)n,故x.解析依题意,得消去bn,得an1an150.由a1300,得a2300;由a2300,得a3300,从而得a10300,选B.1数列综合问题一般先求数列的通项公式,这是做好该类题的关键若是等差数列或等比数列,则直接运用公式求解,否则常用下列方法求解:(1)an(2)递推关系形如an1anf(n),常用累加法求通项(3)递推关系形如f(n),常用累乘法求通项(4)递推关系形如“an1panq(p、q是常数,且p1,q0)”的数列求通项,常用待定系数法可设an1p(an),经过比较,求得,则数列an是一个等比数列(5)递推关系形如“an1panqn

16、(q,p为常数,且p1,q0)”的数列求通项,此类型可以将关系式两边同除以qn转化为类型(4),或同除以pn1转为用迭加法求解2数列求和中应用转化与化归思想的常见类型:(1)错位相减法求和时,将问题转化为等比数列的求和问题求解(2)并项求和时,将问题转化为等差数列求和(3)分组求和时,将问题转化为能用公式法或错位相减法或裂项相消法或并项法求和的几个数列的和求解提醒:运用错位相减法求和时,相减后,要注意右边的n1项中的前n项,哪些项构成等比数列,以及两边需除以代数式时注意要讨论代数式是否为零3数列应用题主要考查应用所学知识分析和解析问题的能力其中,建立数列模型是解决这类问题的核心,在解题中的主要

17、思路:首先构造等差数列或等比数列模型,然后用相应的通项公式与求和公式求解;通过归纳得到结论,再用数列知识求解.真题感悟1(2013·湖南)设Sn为数列an的前n项和,Sn(1)nan,nN*,则:(1)a3_;(2)S1S2S100_.答案(1)(2)解析anSnSn1(1)nan(1)n1an1(n2),an(1)nan(1)n1an1(n2)当n为偶数时,an1(n2),当n为奇数时,2anan1(n2),当n4时,a3.根据以上an的关系式及递推式可求a1,a3,a5,a7,a2,a4,a6,a8,.a2a1,a4a3,a6a5,S1S2S100(a2a1)(a4a3)(a10

18、0a99).2(2014·课标全国)已知数列an满足a11,an13an1.(1)证明:an是等比数列,并求an的通项公式;(2)证明:<.证明(1)由an13an1,得an13(an)又a1,所以an是首项为,公比为3的等比数列an,因此an的通项公式为an.(2)由(1)知.因为当n1时,3n12×3n1,所以.于是1(1)<.所以<.押题精练1如图,一个类似杨辉三角的数阵,则第n(n2)行的第2个数为_答案n22n3解析由题意可知:图中每行的第二个数分别为3,6,11,18,即a23,a36,a411,a518,a3a23,a4a35,a5a47,a

19、nan12n3,累加得:ana2357(2n3),ann22n3.2秋末冬初,流感盛行,特别是甲型H1N1流感某医院近30天每天入院治疗甲流的人数依次构成数列an,已知a11,a22,且an2an1(1)n(nN*),则该医院30天入院治疗甲流共有_人答案255解析由于an2an1(1)n,所以a1a3a291,a2,a4,a30构成公差为2的等差数列,所以a1a2a29a301515×2×2255.故该医院30天入院治疗甲流的人数为255.3已知数列bn满足3(n1)bnnbn1,且b13.(1)求数列bn的通项公式;(2)已知,求证:<1.(1)解因为3(n1)b

20、nnbn1,所以.则3×,3×,3×,3×,累乘,可得3n1×n,因为b13,所以bnn·3n,即数列bn的通项公式bnn·3n.(2)证明因为,所以an·3n.因为··()···,所以(1··)(··)(··)1·.因为nN*,所以0<·,所以1·<1,所以<1.(推荐时间:60分钟)一、选择题1数列an共有5项,其中a10,a52,且|ai1ai|1,i1

21、,2,3,4,则满足条件的不同数列的个数为()A3 B4C5 D6答案B解析设biai1ai,i1,2,3,4,则bi等于1或1,由a5(a5a4)(a4a3)(a3a2)(a2a1)b4b3b2b1,知bi(i1,2,3,4)共有3个1,1个1.所以符合条件的an共有4个2已知在数列an中,a160,an1an3,则|a1|a2|a3|a30|等于()A445 B765C1 080 D3 105答案B解析an1an3,an1an3.an是以60为首项,3为公差的等差数列an603(n1)3n63.令an0,得n21.前20项都为负值|a1|a2|a3|a30|(a1a2a20)a21a302

22、S20S30.Snn×n,|a1|a2|a3|a30|765.3在等差数列an中,a12 013,其前n项和为Sn,若2,则S2 013的值等于()A2 011 B2 012C2 010 D2 013答案D解析根据等差数列的性质,得数列也是等差数列,根据已知可得这个数列的首项a12 013,公差d1,故2 013(2 0131)×11,所以S2 0132 013.4(2013·昆明调研)已知数列an满足an1anan1(n2),a11,a23,记Sna1a2an,则下列结论正确的是()Aa1001,S1005 Ba1003,S1005Ca1003,S1002 Da

23、1001,S1002答案A解析由题意知,a11,a23,a32,a41,a53,a62,a71,由此可以得出数列an是以6为一个周期,所以a100a41,S100a1a2a3a45,故选A.5数列an的通项公式anncos ,其前n项和为Sn,则S2 012等于()A1 006 B2 012 C503 D0答案A解析用归纳法求解anncos ,a10,a22,a30,a44,a50,a66,a70,a88,.由此易知a4n2(4n2),a4n4n,且a1a2a3a4242,a5a6a7a8682,a4n3a4n2a4n1a4n(4n2)4n2.又2 0124×503,a1a2a2 0

24、12222×5031 006.6数列an满足a11,且对任意的m,nN*都有amnamanmn,则等于()A. B. C. D.答案A解析令m1,得an1ann1,即an1ann1,于是a2a12,a3a23,anan1n,上述n1个式子相加得ana123n,所以an123n,因此2,所以22.二、填空题7在数列an中,a11,an2(1)nan1,记Sn是数列an的前n项和,则S60_.答案480解析an2(1)nan1,a3a11,a5a31,a7a51,且a4a21,a6a41,a8a61,a2n1为等差数列,且a2n11(n1)×1n,即a11,a32,a53,a7

25、4,S4a1a2a3a41124,S8S4a5a6a7a83418,S12S8a9a10a11a1256112,S604×15×4480.8设Sn为数列an的前n项和,若(nN*)是非零常数,则称该数列为“和等比数列”;若数列cn是首项为2,公差为d(d0)的等差数列,且数列cn是“和等比数列”,则d_.答案4解析由题意可知,数列cn的前n项和为Sn,前2n项和为S2n,所以22.因为数列cn是“和等比数列”,即为非零常数,所以d4.9设Sn(nN*),且Sn1·Sn2,则n的值是_答案5解析Sn1(1)()()1,Sn2.Sn1·Sn2,解得n5.10已知数列an的通项公式为an,前n项和为Sn,若对任意的正整数n,不等式S2nSn>恒成立,则常数m所能取得的最大整数为_答案5解析要使S2nSn>恒成立,只需(S2nSn)min>.因为(S2(n1)Sn1)(S2nSn)(S2n2S2n)(Sn1Sn)a2n1a2n2an1>>0,所以S2nSnS2S1,所以<m<,m所能取得的最大整数为5.三、解答题11在等比数列an中,a1>0,nN*,且a3a28,又a1,a5的等比中项为16.(1)求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论