

下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、“ 3.3.13.3.1 二元一次不等式(组)与平面区域”教案一、题目 :高中数学必修 5 5 第三章不等式 第 3.33.3 节 二元一次不等式 (组)与简单的 线性规划问题 3.3.13.3.1 二元一次不等式(组)与平面区域 第一课时二、课程分析 :教材中为了引导学生探究二元一次不等式表示的平面区域, 采用了类比一元 一次不等式的解集在数轴上的表示法, 这是一条很好的思路, 教学中应该遵循这 一思路展开教学,引导学生进行探究,本课的教学设计也是以这一思路为指导的。 另外,教材中的探究过程是在直线上和左上方分别取点 P P 和 A A ,使这两点的横坐 标相等,比较纵坐标的大小,进而总结出
2、“同侧同号”的结论。 这个探究过程的 逻辑是严密的, 却也是非实质的,“P P 与A A 的横坐标相同”这一限制是多余的, 在学生小组活动中可以不用兼顾, 只需在直线某侧任意取若干点, 把坐标代入直 线方程, 考察计算结果的符号即可, 为了弥补这样做的逻辑缺陷, 教师可以在小 组活动后统一用代数办法进行证明。三、 学情分析 :学生的基础知识较差, 分析问题、解决问题的能力还不成熟,需要依据这一 学情对教学活动做如下调整:一是放弃教材中由实际情境引出二元一次不等式的 相关概念的设计,改为一句话带过:“在日常生活中,有很多不等关系需要用二 元一次不等式(组)来表达。所以本节课我们先来探究二元一次不
3、等式(组)的 相关知识,为以后的学习生活打好基础。 ”这样做是因为学生很可能在寻找不等 关系、列不等式组这些动作中花费较多时间。二是在小组合作探究活动之前, 教 师先引导学生理清探究的思路, 定好探究目标。 这样可以使时间有限的小组探究 活动的效率提高,使每一个同学都能在探究中自己的任务。四、 教学目标 :1 1、 知识与技能:了解二元一次不等式(组)的相关概念,会用“特殊点法”画 出二元一次不等式(组)表示的平面区域。2 2、 过程与方法:通过类比,找到探究的途径;在探究过程中,善于发现,及时 总结,进一步熟悉从特殊到一般、数形结合等数学思想方法。3 3、 情感态度与价值观:在小组合作探究活
4、动中,积极投入,培养合作意识,增 强学习数学的信心,感悟探求新知的常用思想。五、 教学重点:用“特殊点法”画出二元一次不等式(组)表示的平面区域。六、教学难点:“特殊点法”画二元一次不等式(组)表示的平面区域的探究结束(一)、前提测评1 1、在直角坐标系中,画直线 x y-4 = =0 0 的一般步骤是:(1 1) 列表 :x0 01 1y y1 10 0(2 2)描点 ;(3 3) 连线 。2 2、观察图形,这条直线把平面直角坐标系中的点分成了哪几个部分?答:分成了右上方、左下方、直线上三个部分。3 3、( 1 1)含有一两个_未知数,并且未知数的次数是不等式;1 1 的不等式称为二元一次课
5、件达标测评44(2 2)由 几个二元一次不等式 组成的不等式组,称为二元一次不等式组;(3 3)满足二元一次不等式(组)的 x 和 y y 的取值构成 有序数对(x x,y y),所有 这样的 有序数对(x x, y y)构成的 集合 称为二元一次不等式(组)的解集。(4 4)二元一次不等式(组)的解集可以看成 直角坐标系内的点构成的集合。 (二八展示目标1 1、知识与技能:了解二元一次不等式(组)的相关概念,会用“特殊点法”画 出二元一次不等式(组)表示的平面区域。2 2、过程与方法:通过类比,找到探究的途径;在探究过程中,善于发现,及时 总结,进一步熟悉从特殊到一般、数形结合等数学思想方法
6、。3 3、情感态度与价值观:在小组合作探究活动中,积极投入,培养合作意识,增 强学习数学的信心,感悟探求新知的常用思想。(三)、导学达标探究:不等式 Ax By C . 0 的解集如何表示?方法导引:类比一元一次不等式(组)的解集的表示方法:一元一次不等式(组) 的解集用数轴上的区间表示。1 1、 数轴上的点与 实数_-对应,某数 a a 右侧的数总比 a a 大,左侧的数总比 a a 小_. .2 2、由此,不等式 xaxa 的解集在数轴上表示为:a x不等式 X X 岂 a a 的解集在数轴上表示为:- -a x其中虚心点表示 不包括 a a,实心点表示一包括_ a a上+303 3、不等
7、式组 1 1门的解集在数轴上表示为lx 4 01 1、有序数对(x,yx,y )与 平面坐标上的点_ _一一对应, 故二元一次不等式 (组) 的解集可以看成 直角坐标平面内的点构 成的集合 (区域)。2 2、直线 Ax By 0 上的点都满足直线方程,那么把它两侧点的坐标分别代入方程左端,有何确定的规律呢?3 3、如果有,怎样利用这一规律来表示不等式Ax By C 0(或,乞,_)的解集呢?4 4、能否进一步得出二元一次不等式组的解集方法呢?小组合作探究活动 目标:根据上面的类比分析,尝试回答上诉 2 2、3 3、4 4:1 1、任意选取的直线的方程(一般式方程) ;_2 2、画出该直线:3
8、3、在直线两侧各选取一组点,找到这些点的坐标,并把它们代入直线的方程 左端,写出计算结果的符号。第一组点:_、_ _符号依次是_、_ _第二组点:_、_ _符号依次是_、_ _以 x x - y y - 6 6 = = 0 0 为例: 作出 x x - y y - 6=06=0 的图像一一一条直线,直线把平面分成三部分:直线上、左上方区域和右下方区域。元一次不等式 AxAx + + ByBy + + C C 0 0(或,)在平面直角坐标系中表示直线 AxAx + + ByBy + + C C= = 0 0 某一侧所有点组成的平面区域。(虚线表示区域不包括边界直线)类比迁移:-30AxAx +
9、+ ByBy + + C C = =0 0结论:二元一次不等式表示相应直线的某一侧区域 例题: : 例 1.1.画出不等式 x 4y 4 表示的平面区域。根据本题的做法,试总结画二元一次不等式表示的平面区域的步骤。步骤总结:1 1、线定界(注意边界的虚实,不等式中带有“= =”则为实线,没有则为虚线。),2 2、点定域(当CM0 0 时,代入点(0,00,0 )进行测试,当 C=0C=0 时,代入 (0,10,1 )或(1,01,0 )进行测试)y y 丈 _3x_3x + +1212例 2.2.用平面区域表示不等式组丿y y的解集。_xc2y_xc2y根据本题的做法,试总结画二元一次不等式组
10、表示的平面区域的步骤:步骤总结:1 1、线定界(注意边界的虚实,不等式中带有“= =”则为实线,没有则为虚线。),2 2、点定域(当CM0 0 时,代入点(0,00,0 )进行测试,当 C=0C=0 时,代入(0,10,1 )或(1,01,0 )进行测试),3 3、交定区(各不等式表示的平面区域的公共部分 就是所求作的平面区域)(四)达标测评1 1、下列各项中,不是二元一次不等式组 的是2 2、不在 3x - 2y 6 表示的平面区域内的点是(D D )A A . (0,00,0)B.B. (1,11,1)C.C. (0,20,2)3 3、不等式 x -2y 6 0 0 表示的区域在直线 x -2y 6 = 0 的 (B B )4 4、不等式 3x,2y-6 _0 表示的平面区域是 (A A )x x + + y y 1 1 * * 0 05 5、不等式组丿y y表示的平面区域是(B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CI 120-2023智慧科技馆建设导则
- T/CHTS 10138-2024高速公路服务区收费站设计指南
- T/CHATA 019-2022肺结核患者管理移动应用程序的功能及应用规范
- T/CGAS 026.2-2023瓶装液化石油气管理规范第2部分:平台建设
- T/CECS 10170-2022陶瓷透水砖
- T/CECS 10074-2019绿色建材评价太阳能光伏发电系统
- T/CECS 10036-2019绿色建材评价建筑陶瓷
- T/CCSAS 031-2023蒸馏、蒸发单元操作机械化、自动化设计方案指南
- T/CCS 064-2023煤矿智能化通风系统运维管理规范
- T/CCS 059-2023智能化煤矿运维技术架构与流程
- 隧道二衬台车安装拆除施工方案
- 2022旅游景区医疗救助应急处置要求
- 儿童输血指南课件
- 2025-2030中国充电机器人行业市场现状分析及竞争格局与投资发展研究报告
- 胸腺瘤切除术后的护理
- dl∕t 5491-2014 电力工程交流不间断电源系统设计技术规程
- 2025年共青团入团考试测试题库及答案
- 《读读童谣和儿歌》(一-四测)阅读练习题
- 公安指挥中心业务培训
- 2025年租房合同房东模板
- 大学生创业计划书:烧烤店
评论
0/150
提交评论