人教版第六章平面直角坐标系全章教案_第1页
人教版第六章平面直角坐标系全章教案_第2页
人教版第六章平面直角坐标系全章教案_第3页
人教版第六章平面直角坐标系全章教案_第4页
人教版第六章平面直角坐标系全章教案_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、人教版第六章平面直角坐标系全章教案2012年 月 日 第 课时课题:6.1.1有序数对【教学目标】1、理解有序数对的意义。2、能用有序数对表示实际生活中物体的位置3、经历用有序数对表示位置的过程,体验数、符号是描述世界的重要手段,体验数形结合思想【教学重点】利用有序数对准确地表示出一个点的位置【教学难点】有序数对中有序的理解教学过程一、创设情境,提出问题问题:如果老师要提问同学(下面为某教室平面图)1、只给一个数据“第3列”,你能确定回答问题的同学的位置吗?2、给两个数据“第3列第2排”,你能确定该同学的位置吗?3、你认为在平面中需要几个数据才能确定一个位置?二、探索新知通过找“列数”和“排数

2、”的交叉点,我们就能找个具体的位置。问题1、(约定“列数”在钱,“排数”在后)(1)位置? (2)观察上面四组数对以及他们所对应的位置,思考:1,3和3,1表示的是不是同一第 1 页人教版第六章平面直角坐标系全章教案归纳:有顺序的两个数a与b组成的数对,如果约定了前面的数表示“列数”,后面的数表示“排数”,那么a与b组成的数对就表示一个确定的位置。我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。像表格中的数对可以记作(1,3)、(5,2)(3,6)。问题2:利用有序数对可以准确表示一个位置,你能举出生活中用有序数对表示地理位置的例子吗?三、巩固训练,熟练技能游戏情境:下

3、面我们通过游戏来加强同学们对有序数对的了解。约定“列数”在钱,“排数”在后,请找出与以下有序数对相对用的同学 (1,5)),(5,1),(2,4),(4,2),(3,3),(7,3),看看叫什么名字?练习1、根据左下图例子(3,2),口答其他圆点的有序数对?练习2、如右下图,红马的位置是(2,1),你能表示出红帅、红车、红炮的位置吗?练习3、如果将一张“12排10号”的电影票记为(12,10),那么(10,12)的电影票表示的位置是 ,“6排25号”简单记为练习4、下列数据不能确定物体位置的是( )A、希望路25号 B、北偏东30 C、东经118,北纬40 D、西南方向50米处练习5、课本P4

4、0页练习题练习6:补充练习四、课堂小结:本节课主要学习了有序数对1、什么叫做有序数对?2、注意的问题:(1)表示平面内的点的位置可以用有序数对;(2)有序数对用符号表示时,中间用逗号隔开,外边必须加小括号。五、布置作业:1、课本P44页习题6.1第1题2、预习课本P40-43的6.1.2平面直角坐标系,并尝试完成课本P44页习题6.1第2题第 2 页人教版第六章平面直角坐标系全章教案2012年 月 日 第 课时课题:6.1.2平面直角坐标系(1)【教学目标】1、掌握平面直角坐标系的有关概念;了解点的坐标的意义2、根据点的位置写出点的坐标,能建立平面直角坐标系,并根据坐标找点;3、通过建立平面直

5、角坐标系的过程,进一步渗透数形结合的思想【教学重点】平面直角坐标系和点的坐标【教学难点】在平面直角坐标系中根据点的位置写出点的坐标,由坐标描出点教学过程一、复习旧知识,导入新课问题:(1)什么是数轴,画出数轴.(2)指出课本图6.1.2中A、B点所表示的数是什么?并在数轴上描出“-3 ”表示的点在数轴上的位置.(3)数轴上的点与 是一一对应。二、探索新知,解决问题思考:类似于利用数轴确定直线上点的位置, 能不能找到一种办法来确定平面点的位置呢?(如下左图中的四个点A、B、C、D)我们可以在平面内画出两条互相垂直、原点重合的数轴来表示,如上右图.用平面内两条互相垂直、 原点重合的数轴组成平面直角

6、坐标系. 水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y 轴或纵轴,取向上方向为正方向;两坐标的交点为平面直角坐标系的原点。注意:在一般情况下,两条坐标轴所取的单位长度是一致的。三、讲练结合例1、请你在图中标出点A、B、C、D、E 、F在直角坐标系中的坐标。解:由图可知,各点的坐标分别是:A(4,3)、 B(-2,3)C(-4,-1)、D(2,-2)第 3 页人教版第六章平面直角坐标系全章教案E(0,5)、 F(3,0)分析讲解:(-2,3)就叫做点B的坐标,其中-2是点B的横坐标,3是点B的纵坐标。 练习:课本P43页练习第1,2题四、巩固练习,深化知识1、在平面内,两条的

7、数轴组成平面直角坐标系。2、请同学们在练习本上尝试建立一个平面直角坐标系,并描出点(1)A(3,7)B(2,-4)C(-5,-3)O(0,0)(2)D(0,5)E(0,-3)F(0,6)(3)G(3,0)H(-2,0)I(-4,0)思考:观察第(2)(3)组的点的坐标和坐标系中的位置,你能发现什么样的规律? 结论:1、(2)组的点都在y轴上,他们的点的横坐标都是0,2、(3)组的点都在x轴上,他们的点的横坐标都是0,3、原点的坐标是(0,0),它位于两坐标轴的交点。强调:(1)画平面直角坐标系时,别忘了标x轴、y轴的正方向及x轴、y轴的名称。(2)写坐标时要加小括号,括号内先横后纵,中间用逗号

8、隔开,例如(2,5)。3、(1)如果点P(1,a-1)在x轴上,那么a,P点坐标为_(2)如果点P(a+2,a)在y轴上,那么a,P点坐标为_(3)如果点P(a,a2)在x轴上,那么a,P点坐标为_(4)如果点P(a-1,b2)在原点,那么ab ,P点坐标为_4、如右图:下列说法正确的是( )A、点A的横坐标是4 B、点A的横坐标是-4C、点A的坐标是(4,-2) D、点A的坐标是(-2,4)五、课堂小结:(1)什么叫做平面直角坐标系?(2)画直角坐标系的时候要注意什么?六、拓展练习:1、点A(2,-7)到x轴的距离为,到y轴的距离为2、点P位于y轴左方,距离y轴3个单位长度,位于x轴的上方,

9、距离x轴4个单位长度,则点P的坐标是六、布置作业:(1)课本P45页第3和5题(2)预习课本P42-43的内容,并思考什么叫做象限上的点,不同象限的点坐标有什么特征?第 4 页人教版第六章平面直角坐标系全章教案2012年 月 日 第 课时课题:6.1.2平面直角坐标系(2)【教学目标】1、掌握各象限内点的坐标符号的特点。2、了解关于坐标轴对称的点的坐标特点,及平行于坐标轴的直线上的点的坐标特点3、经历探索点的位置与坐标之间的关系的过程,发展学生有条理、清晰的阐述自己的观点的能力【教学重点】平面直角坐标系中的特殊点的特点与规律【教学难点】探索特殊点与坐标之间的关系教学过程一、复习旧知,铺垫新知问

10、题1:请在平面直角坐标系中描出下列各个点,并注意观察各点坐标与所处的位置间的规律。A(3,2) B(-3,-2) C(3,-2) D(-3,2) E(2,3) F(-2,-3) G(2,-3) H(-2,3) I(0,4) J(4,0) K(-4,0) L(0,-4) 问题2:请在平面直角坐标系中描出下列各个点,并注意观察各点坐标与所处的位置间的规律。A(3,4) B(2,5) C(6,6) D(-3,2) E(-2,3) F(-4,1) G(-2,-3) H(-5,-3) I(-6,-4) J(4,-1) K(3,-2) L(2,-4)二、解决问题,探索新知1、定义:如图,建立平面直角坐标系

11、后,坐标平面被两条坐标轴分成四个部分,分别叫做第一象限,第二象限,第三象限,第四象限。坐标轴上的点不属于任何象限。2、探索象限上的点的坐标特点问题3:观察上面问题1、2我们画出来的平面直角坐标系中的点,大家找一找哪些是第一象限上的点?组成他们的坐标的有序数对有什么特点?第二、第三、第四象限呢? 讨论结果:(1)各象限内点的坐标符号若点P(a,b)在第一象限,那么a0,b0,简记为(+,+)若点P(a,b)在第二象限,那么a0,简记为(,+)若点P(a,b)在第三象限,那么a0,b0,b0,b0 B、a0,b0 C、a0 D、a0,b0,b-2,则点(a,b+2)应在( )A、第一象限 B、第二

12、象限 C、第三象限 D、第四象限 3、若点N(a+5,a-2)在y轴上,则点N的坐标是4、若点P(a,b)在第三象限内,则点Q(a,a-b)应在( )A、第一象限 B、第二象限 C、第三象限 D、第四象限 5、建立一个平面直角坐标系,描出点A(-2,4)、B(3,4),画出直线AB,若点E为直线AB上的点,则点E的纵坐标是什么?如果有一些点在平行于y轴的直线上,那么这些点的横坐标有什么特点?讨论结果:纵坐标相同的点所在直线平行于x轴;平行于y轴的直线上的点横坐标相同。 6、补充练习四、课堂小结:本节课主要学习了平面直角坐标系中点的坐标特点。 五、布置作业:课本P45页第6题。第 6 页人教版第

13、六章平面直角坐标系全章教案2012年 月 日 第 课时课题:6.2.1用坐标表示地理位置【教学目标】1、通过学生的动手探究得出实际问题中建立平面直角坐标系的基本方法,并能结合具体情境运用坐标描述地理位置。2、通过体会平面直角坐标系在解决实际问题中的作用,加深学生对数学重要性的认识,激发学生学习数学的热情。3、通过生生交流合作,师生交流探讨,培养学生与他人合作的良好品质。【教学重点】根据具体情境建立平面直角坐标系,用坐标描述地理位置【教学难点】根据具体情境建立适当的平面直角坐标系教学过程一、创设情境,导入新课情境一、学习组织同学们到广州香江动物园玩,到了动物园的入口,站在动物园的平面示意图前,你

14、将如何辨别位置和方向?讨论:首先我们要找到地图中我们目前所处的位置,然后根据方向,辨别出我们将要去的具体位置。我们甚至可以以自己为原点,建立平面直角坐标系,然后根据地图的比例,计算出距离要去的景点的路程。二、探究新知探究:根据以下条件画出一幅示意图,标出学校和小刚家、小强家、小敏家的位置。 小刚家:出校门向东走150米,再向北走200米。小强家:出校门向西走200米,再向北走350米,最后向东走50米小敏家:出校门向南走100米,再向东走300米,最后向南走75米。提示:同学们,在建立平面直角坐标系之前,想一想我们应该把原点建立在什么位置上?为什么要这样做?同学们自己动手实践,亲身体验建立坐标

15、系的过程。最后展示最优的方案。(如图2) 归纳:利用平面直角坐标系绘制区域内一些地点分布情况的平面图的过程如下:(1) 选原点:建立坐标系,要选择一个适当的参照点为原点,(2) 规定X轴、y轴的正方向;第 7 页人教版第六章平面直角坐标系全章教案(3) 确定单位长度:根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(4) 在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。三、巩固练习,强化技能1、根据以下条件建立平面直角坐标系,标出文化广场、一小、实验中学、实验小学的位置,并写出坐标。一小:从文化广场向北走400米,再向东走200米实验中学:从文化广场向西走600米,再向北走300

16、米,再向西走100米实验小学:从文化广场向南走100米,再向东走100米2、根据以下条件画一幅地图,标出中山公园的南门、游乐园、望春亭、牡丹园的位置游乐园:进南门,向北走100米,再向东走100米。望春亭:进南门,向北走200米,再向西走300米。牡丹园:进南门,向北走600米,再向东走200米。3、课本P59第4题4、补充练习四、课堂小结本节课我们主要学习如何根据实际情景建立平面直角坐标系,并在坐标系中标出物体的位置。那么根据实际问题建立平面直角坐标系的步骤是怎样的?五、布置作业:课本P54第5题六、拓展练习:课本P55页第10题、课本P56页数学活动1第 8 页人教版第六章平面直角坐标系全

17、章教案2012年 月 日 第 课时课题:6.2.2用坐标表示平移(1)【教学目标】1、掌握点的坐标变化与点平移的关系;会根据的点的坐标的变化,来判定点的移动过程2、经历探索点坐标变化与点平移的关系,发展学生的形象思维能力和数形结合意识【教学重点】掌握坐标变化与点平移的关系【教学难点】探索坐标变化与点平移的关系教学过程一、复习旧知,铺垫新知1、知识回顾:2、问题1:什么叫做平移?回答:把一个图形整体沿着某一方向移动一定的距离,图形的这种移动叫做平移。(图形的平移建立在点平移的基础上,其整体平移往往通过某些特殊点的平移来解决) 问题2:平移后得到的新图形与原图形有什么关系?新图形和原图形对应点的连

18、线有什么关系?回答:平移后图形的位置改变,形状和大小不变;新图形和原图形对应点的连线平行且相等。2、复习习题:(1)已知三角形ABC,平移三角形ABC使点A和点A 重合。(2)把下图中得鱼向左平移6格,二、讲练结合,探索新知探索点坐标变化与点平移的关系问题1:(1)将点A(2,3)向右平移5个单位长度,得到点A1,坐标为 , 点A向上平移4个单位长度,得到点A2,坐标为(2)把点A(2,3)向左平移3个长度单位,得到点A3,坐标为 ;把点第 9 页人教版第六章平面直角坐标系全章教案A向下平移2个单位长度,得到点A4,坐标为(3)观察它们坐标的变化,你能从中发现什么规律吗?再找几个点,对它们进行

19、平移,观察它们的坐标是否按你发现的规律变化?讨论结果:在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y);将(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(x,y-b)练习训练:1、点P(2,-1)向左平移3个单位长度得点Q的坐标为_.2、点P(2,-1)向上平移3个单位长度得点Q的坐标为_.3、点P(2,-1)向右平移3个单位长度得点Q的坐标为_.4、点P(2,-1)向下平移3个单位长度得点Q的坐标为_.5、点P(2,-1)向右平移3个单位长度,再向下平移2个单位长度得点Q的坐标为_.6、点P(2,-1)向上平

20、移3个单位长度,再向左平移2个单位长度得点Q的坐标为_.7、点P(2,-1)向下平移3个单位长度,再向左平移2个单位长度得点Q的坐标为_. 问题2:如图,如何平移点A(2,1)得到点A ?可将点A:先向右平移5个单位长度,再向下平移3个单位长度先向下平移3个单位长度,再向右平移5个单位长度结论:点的斜向平移,可以通过点的水平平移和垂直平移来完成。完成课本P55页第6题巩固训练1、将点A(x,y)的横坐标减2,纵坐标加3,得到B点坐标点A先向 平移 个单位长度,再向 平移 个单位长度2、补充练习3、拓展训练:已知点A(2,3)B(4,1)C(2,0)和P(x,y)将它们作同样的移动,P的对应点为

21、P1(x+5,y+3),求A、B、C的对用点A1、B1、C1的坐标?三、课堂小结本节课我们主要学习了点平移后坐标的变化贵了和坐标变化后点的平移规律。四、布置作业第 10 页人教版第六章平面直角坐标系全章教案2012年 月 日 第 课时课题:6.2.2用坐标表示平移(2)【教学目标】1、掌握点的坐标变化与图形平移的关系;会根据的图形中点的坐标的变化,来判定图形的移动过程2、经历探索点坐标变化与图形平移的关系,发展学生的形象思维能力和数形结合意识【教学重点】掌握坐标变化与图形平移的关系【教学难点】探索坐标变化与图形平移的关系教学过程一、复习旧知,导入新课上节课我们学习了点的平移与坐标的变化。1、请

22、同学们建立一个平面直角坐标系,并描出点A(4,3)B(3,1)C(1,2)2、在同一直角坐标系中将1中的点A、B、C横坐标都减去6,纵坐标不变,得到点、。3、在同一直角坐标系中将1中的点A、B、C纵坐标减去5,横坐标不变,得到点、二、探究新课,解决问题探索图形各个点坐标变化与图形平移的关系(1)连接点A、B、C,组成ABC;(2)连接点A、B、C,组成ABC。(3)连接点A1、B1、C1,组成A1B1C1。观察ABC和ABC的大小、形状、位置上有什么关系?ABC和A1B1C1的大小、形状、位置上又有什么关系?为什么?第 11 页人教版第六章平面直角坐标系全章教案结论:ABC和ABC的大小、形状

23、完全相同,可以看作将ABC向左平移6个单位长度,得到ABC。ABC和A1B1C1的大小、形状完全相同,可以看作将ABC向下平移5个单位长度,得到ABC归纳:在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向 (或向 )平移 单位长度;如果把它各个点的纵坐标都加(或减去)一个正数b,相应的新图形就是把原图形向 (或向 )平移 单位长度。及时练习,当堂反馈:完成课本P53页练习题完成补充练习三、课堂小结这节课我们主要学习了图形在平面直角坐标系平移,图形中的对用点的坐标产生的变化规律。四、布置作业完成课本P54页第3,4题五、拓展练习如图,A1B1C

24、1是由ABC平移后得到的,ABC中任意一点P(x,y)经平移后对用点为P1(x-3,y-5),求A1、B1、C1的坐标。第 12 页人教版第六章平面直角坐标系全章教案2012年 月 日 第 课时课题:6.2.2用坐标表示平移(3)【教学目标】1、进一步认识平面直角坐标系,了解点、图形与坐标的对应关系;能求出给定坐标的点构成的图形的面积2、能建立适当的平面直角坐标系,通过描点连线,求解图形面积,进一步体会平面直角坐标系在实际问题中的作用【教学重点】根据图形中点的坐标求出图形的面积【教学难点】根据图形中点的坐标求出图形的面积一、复习旧知,引入新课问题1:如左下图,ABC中任意一点P(x,y)经平移

25、后对应点为P(x+4,y+3),将ABC作同样的平移得到ABC,求点A,B,C的坐标。二、探索新知,解决问题例题1:如右上图,ABC中,各顶点坐标为A(0,3)B(1,0)C(3,0),求ABC的面积。解:根据图形可知AOBC,由ABC的顶点坐标可知AO=3,BC=4SABC=AOBC=34=6 2211三、跟踪练习,逐步深入1、ABC中,各顶点坐标为A(0,3)B(1,0)C(5,0),求ABC的面积。2、ABC中,各顶点坐标为A(0,3)B(4,0),求ABO的面积。3、ABC中,各顶点坐标为A(2,3)B(4,2),求ABO的面积。4、ABC中,各顶点坐标为A(2,1)B(4,2)C(1

26、,3),求ABC的面积。5、ABC中,各顶点坐标为A(4,3)B(4,2)C(1,3),求ABC的面积。以上题目画图如下第 13 页人教版第六章平面直角坐标系全章教案图1 图2 图3图4 图56、四边形ABCD如右图所示,求四边形ABCD的面积分析:题目中四边形ABCD的面积可以通过“切割”的方法进行求解四、课堂小结本节课我们主要学习了如何根据已知点的坐标,求出相应图形的面积。五、布置作业课本P55页第8题说明:本节课虽然不是本章书的重点,但是本人认为对于平面直角坐标系、点的坐标的应用是必须的。这节课可以让学生在自主探索、小组合作中完成,老师只需要进行适当的引导,指导学生破题。第 14 页人教

27、版第六章平面直角坐标系全章教案2012年 月 日 第 课时课题:第六章本章复习【教学目标】1、进一步认识平面直角坐标系,了解点与坐标的对应关系;在给定的直角坐标系中,能根据坐标描出点的位置,能由点的位置写出点的坐标。2、能建立适当的平面直角坐标系描述物体的位置,进一步体会平面直角坐标系在解决问题中的作用3、在同一平面直角坐标系中,能用坐标表示平移变换。进一步让学生看到平面直角坐标系是数与形的桥梁,感受数学问题和几何问题的相互转化,发展学生的形象思维呢里、树立数形结合意识。【教学重点】全章知识的归纳整理及应用【教学难点】所学知识的应用教学过程一、本章知识系统梳理二、知识要点回顾(一)基础知识 1

28、、有序数对:把有 的两个数a与b组成的数对,叫做有序数对,记作(a,b) 练习1:(1)在电影院中,如果将“12排8号”记作(12,8),那么“26排13号”记作 ,(11,9)则表示(2)如右图所示,点A记为(3,5),则点B记为 ,点C记为注意:有序数对(a,b)中的a与b要用逗号隔开,外边必须加上小括号。2、平面直角坐标系的意义:在平面内, 条具有公共原点并且互相 的数轴所构成的图形叫做平面直角坐标系,其中水平的数轴叫做 或 ,取向 为正方向;竖直的数轴叫做做 或 ,取向 为正方向;第 15 页人教版第六章平面直角坐标系全章教案横轴与纵轴的交点叫做平面直角坐标系的 ,其坐标为 ;这两条数

29、轴的正方向所夹的象限叫做 ,其他三个象限按逆时针方向依次叫做 ,坐标轴上的点不属于任何象限,原点既在x轴上也在y轴上。3、各象限内点的坐标符号特点:在平面直角坐标系中,第一象限内的横坐标和纵坐标都是正数,简单记为(+,+),那么第二象限的坐标特征是 ,第三象限坐标特征是 ,第四象限是 。练习2:(1)建立平面直角坐标系并描出以下各点,并指出他们的横坐标和纵坐标,他们所在的象限A(3,7)、B(6,4)、C(4,5)、D(2,2)、E(2,0)、F、(0,1)(2)已知点P(x,y)是第三象限的点,则M(-x,y)在第 象限;N(x,-y)在第 象限;Q(-x,-y)在第 象限;4、特殊的点的坐标(1)坐标轴上的点的坐标特点:横轴(x轴)上点的坐标特征是(x,0),即纵坐标都是0;纵轴(y轴)上点的坐标特征是 ,即 ;(2)平行于坐标轴直线上的点的坐标:平行于x轴的直线上的各点的 相同, 不同;平行与y轴的直线上的各点的 相同, 不同。(3)对称点的坐标:点P(a,b)关于x轴对称的点为 ,点P(a,b)关于y轴对称的点为 ;关于原点对称的点为练习3、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论