版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、无穷级数 无穷级数无穷级数无穷级数是研究函数的工具无穷级数是研究函数的工具表示函数表示函数研究性质研究性质数值计算数值计算数项级数数项级数幂级数幂级数傅氏级数傅氏级数第十三章常数项级数的概念和性质 一、常数项级数的概念一、常数项级数的概念 二、无穷级数的基本性质二、无穷级数的基本性质 三、级数收敛的必要条件三、级数收敛的必要条件 机动 目录 上页 下页 返回 结束 第一节 第十三章 一、常数项级数的概念一、常数项级数的概念 引例引例1. 用圆内接正多边形面积逼近圆面积.依次作圆内接正),2, 1,0(23nn边形, 这个和逼近于圆的面积 A .0a1a2ana设 a0 表示,时n即naaaaA
2、210内接正三角形面积, ak 表示边数增加时增加的面积, 则圆内接正边形面积为n23机动 目录 上页 下页 返回 结束 定义定义: 给定一个数列,321nuuuu将各项依,1nnu即1nnunuuuu321称上式为无穷级数, 其中第 n 项nu叫做级数的一般项级数的前 n 项和nkknuS1称为级数的(前n项)部分和.nuuuu321次相加, 简记为,lim存在若SSnn无穷级数收敛收敛,则称并称 S 为级数的和和, 记作机动 目录 上页 下页 返回 结束 (或通项),1nnuS当级数收敛时, 称差值21nnnnuuSSr为级数的余项余项.,lim不存在若nnS则称无穷级数发散发散 .显然0
3、limnnr机动 目录 上页 下页 返回 结束 注:注:只有收敛级数才有余项序列。例例1. 讨论等比级数 (又称几何级数)0(20aqaqaqaaqannn( q 称为公比 ) 的敛散性. 解解: 1) 若,1q12nnqaqaqaaSqqaan1时,当1q, 0limnnq由于从而qannS1lim因此级数收敛 ,;1 qa,1时当q,limnnq由于从而,limnnS则部分和因此级数发散 .其和为机动 目录 上页 下页 返回 结束 2). 若,1q,1时当qanSn因此级数发散 ;,1时当qaaaaan 1) 1(因此nSn 为奇数n 为偶数从而nnSlim综合 1)、2)可知,1q时,
4、等比级数收敛 ;1q时, 等比级数发散 .则,级数成为,a,0不存在 , 因此级数发散.机动 目录 上页 下页 返回 结束 例例2. 判别下列级数的敛散性: .) 1(1)2( ;1ln) 1 (11nnnnnn解解: (1) 12lnnSnnln) 1ln()2ln3(ln) 1ln2(ln) 1ln( n)n(所以级数 (1) 发散 ;技巧技巧:利用 “拆项相消拆项相消” 求和23ln34lnnn1ln机动 目录 上页 下页 返回 结束 (2) ) 1(1431321211nnSn211111n)n(1所以级数 (2) 收敛, 其和为 1 .31214131111nn技巧技巧:利用 “拆项
5、相消拆项相消” 求和机动 目录 上页 下页 返回 结束 二、无穷级数的基本性质二、无穷级数的基本性质 性质性质1. 若级数1nnu收敛于 S ,1nnuS则各项乘以常数 c 所得级数1nnuc也收敛 ,证证: 令,1nkknuS则nkknuc1,nScnnlimSc这说明1nnuc收敛 , 其和为 c S . nnSclim说明说明: 级数各项乘以非零常数后其敛散性不变 .即其和为 c S .机动 目录 上页 下页 返回 结束 性质性质2. 设有两个收敛级数,1nnuS1nnv则级数)(1nnnvu 也收敛, 其和为.S证证: 令,1nkknuS,1nkknv则)(1knkknvu nnS)(
6、nS这说明级数)(1nnnvu 也收敛, 其和为.S机动 目录 上页 下页 返回 结束 说明说明:(2) 若两级数中一个收敛一个发散 , 则)(1nnnvu 必发散 . 但若二级数都发散 ,)(1nnnvu 不一定发散.例如例如, ,) 1(2nnu取,) 1(12 nnv0nnvu而(1) 性质2 表明收敛级数可逐项相加或减 .(用反证法可证)机动 目录 上页 下页 返回 结束 性质性质3. 增加、删除或改变级数的前有限项前有限项, 不改变级数的敛散性.(但在收敛时,其和可能改变)证证: 将级数1nnu的前 k 项去掉,1nnku的部分和为nllknu1knkSSnknS与,时由于n数敛散性
7、相同. 当级数收敛时, 其和的关系为.kSS 类似可证前面增加有限项的情况 .极限状况相同, 故新旧两级所得新级数机动 目录 上页 下页 返回 结束 性质性质4. 收敛级数加括弧后仍收敛,且其和不变。证证: 设收敛级数,1nnuS若按某一规律加括弧,123451()()()nnuuuuuuu则新级数的部分和序列 ), 2 , 1(mm为原级数部分和序列 ),2,1(nSn的一个子序列,1limlimmnmnSS因此必有例如机动 目录 上页 下页 返回 结束 112,uu212345,uuuuu123451,mnnuuuuuuulimnnS推论推论: 若加括弧后的级数发散, 则原级数必发散.注意
8、注意: 1) 收敛级数去括弧后所成的级数不一定收敛.例如,,0) 11 () 11 (但1111发散.用反证法可证用反证法可证2) 加括弧后级数收敛,原级数不一定收敛。回顾:回顾:limnnSa221limlimnnnnSaSa且33132limlimlimnnnnnnSaSaSa且且例例3.判断级数的敛散性:141141131131121121解解: 考虑加括号后的级数)()()(1411411311311211211111nnan12nnna2发散 ,从而原级数发散 .nn121机动 目录 上页 下页 返回 结束 三、级数收敛的必要条件三、级数收敛的必要条件 设收敛级数,1nnuS则必有.
9、0limnnu证证: 1nnnSSu1limlimlimnnnnnnSSu0SS可见: 若级数的一般项不趋于若级数的一般项不趋于0 , 则级数必发散则级数必发散 .例如例如,1) 1(544332211nnn其一般项为1) 1(1nnunn不趋于0,因此这个级数发散.nun,时当机动 目录 上页 下页 返回 结束 注意注意:0limnnu并非级数收敛的充分条件.例如例如, 调和级数nnn13121111虽然,01limlimnunnn但此级数发散 .事实上事实上 , 假设调和级数收敛于 S , 则0)(lim2nnnSSnn2nnnn21312111但nnSS2矛盾! 所以假设不真 .21机动
10、 目录 上页 下页 返回 结束 调和级数nnn13121111111123nSn 231121112nndxdxdxn23112111nndxdxdxxxx111ndxxln1nn nS从而极限不存在,故调和级数发散。1!(1)nnne nn解解: (1) 令,!nnnnneu 则nnuu1nne)1 (1),2, 1(1n故euuunn11从而,0limnnu这说明级数(1) 发散.111)1 ()1 (nnnne11) 1(! ) 1(nnnnennnne!机动 目录 上页 下页 返回 结束 例例4. 判断下列级数的敛散性, 若收敛求其和:111(2)31nnn n111(3)3nnn解解: (2) 由于113nn13q 是的级数,从而收敛;111nn n又收敛,根据二收敛级数之和仍收敛,故原级数收敛。解解: (3) 由于113nn收敛,11nn而发散,故原级数发散例例5. 判断
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 主题宴会酒店场地租赁协议
- 超市入口植物租赁摆放协议
- 房地产开发项目施工合同纠纷范本
- 足球场砼施工班组合同执行
- 体育赛事导演聘用协议
- 质量保证协议书化妆品分销商
- 企业活动商务车租赁合同
- 施工操作钢结构安全协议
- 山东省邹城市实验中学2025届物理高一上期中调研模拟试题含解析
- 2025届湖北省黄冈市麻城实验高中高二物理第一学期期中达标检测试题含解析
- 肺炎护理查房完整版PPT资料课件
- 2020新版高中地理课程标准
- 天气学原理试题库(含答案)
- 部编版二年级上册道德与法治教案(完整版)
- 消化道出血课件
- 与食品经营相适应的主要设备设施布局、操作流程等文件
- 蒂芬巴赫公司电液控制系统维护手册
- 塑胶产品QC工程图
- 2023年四川省凉山州中考数学适应性试卷
- 建立自己的文件夹
- 无锡诺宇医药科技有限公司生产、研发及销售放射性药物项目环境影响报告
评论
0/150
提交评论