SARS传播的数学模型_第1页
SARS传播的数学模型_第2页
SARS传播的数学模型_第3页
SARS传播的数学模型_第4页
SARS传播的数学模型_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、SARS专播的数学模型摘要通过对题目附件1的SARS莫型进行分析和评价,加深了对SARS勺认识和了解。根 据传染病的传播特点,建立了关于SARS病人率和疑似病人率两个常微分方程模型。以 所给数据为基本依据,用Matlab软件进行数值计算,与图形模拟方法求得模型中的有 关参数。当入1=1.5和入2=1时,理论图形与实际图形有良好的吻合,分别得到了SARS病人率和疑似病人率比较符合实际数据的变化图,能正确地预测它们的发展趋势。他们 对于模型中的参数有非常强的灵感性,入1的值作微小的改变对于整个疫情的发展有很大的影响,所以政府采取对SARS疫情的有关措施是完全正确的。本文重点分析了关于SARSW人率

2、的模型一,根据求得的参数,利用相轨线理论对结果加以分析并对整个疫情 作出预测,并推论出SAR航人率关于t的表达式i(t),然后提出了对传染病的控制方案, 同时列举了具体方法,并论证了方法的合理性和可行性,用其它地区的数据对模型进行 检验,说明模型的参数有区域性。关键词:SARS微分方程曲线拟合 数学模型相轨线、问题的提出SARS谷称非典型肺炎,是21世纪第一个在世界范围内传播的传染病。我国作为发 展中大国深受其害:SARS勺爆发和蔓延给我国的经济发展和人民生活带来了很大影响。 在党和政府的统一领导下,全国人民与SARS顽强抗争,取得了可喜的阶段性胜利,并 从中得到了许多重要的经验和教训,认识到

3、在没有找出真正病因和有效治愈方法前,政 府采取的强制性政策对抑制SARS自然发展最有效办法。而本题的目的就是要建立一个 适当的模型对SARS专播规律进行定量地分析、研究,为预测和控制SARS蔓延提供可靠、 足够的信息,无论对现在还是将来都有其重要的现实意义。二、模型的假设1地总人数N可视为常数,即流入人口等于流出人口。2据人口所处的健康状态,将人群分为:健康者,SARS病人,退出者(被治愈者、免 疫者和死亡者)。3.在政府的强制措施下,人口基本不流动,故无病源的流入和流出,避免了交叉感 染,降低了感染基数。4.隔离的人断绝了与外界的联系,不具有传染性。5. SAR3康复者二度感染的概率为0。6

4、.国家完善了监控手段,加强了对SARS病毒监控的力度,故可假设所有感染SARS病毒的人群都进入了SARS病人类和疑似类。7.由于对SARS病原体的研究不够深入,无有效药物可以使人体免疫,同时SARS病毒感染后,大量繁殖,破坏免疫系统,故不可免疫。三、模型的建立(一)参数的设定和符号说明s(t):t时刻健康者在总体人群中的比例i(t):t时刻SARS人在总体人群中的比例l(t):t时刻疑似病人在总体人群中的比例r(t):t时刻被治愈者、死亡者和免疫者在总体人群中的比例之和。 : SARSW人日接触率。为每个病人每天有效接触(足以使健康者受感染变为病人) 的平均人数。u :日治愈率。为每天被治愈的

5、病人占病人总数的比例。:日转化率。为每天危险群体中的疑似病人被确诊为SARS患者的比例。:日死亡率。为每天SARS病人死亡的数量和当天病人总数量的比值2:疑似感染率。为每天感染为疑似病人的比例。(二)模型建立模型一 感染为SARS患者情况由假设,每个病人每天可使is(t)个健康者变为病人,因为病人人数为 Ni(t),所以每天共有iNs(t)i(t)个健康者被感染,于是iNsi 就是病人数Ni的增加率,又因为每天被治愈率为J,死亡率为,所以每天有Ni 个病人被治愈,有 Ni 个病人死亡。那么S(t) i(t) r(t) =1对于退出者dr凹二 L为所有退出者比例之和)dt由假设可知:屮=n +n

6、故SARS患者率模型一的方程建立如下:didt?Si u i Fi(0)=idsiS(0)= So=人 Sii、dtr(0) =0模型二疑似患者的变化情况与前面同样的分析,得到疑似患者率模型二:”dl 、=九2S2l _ l 鼻 dtdS27.-=_九2S2l.dt四、模型求解(一)参数的确定和分析:病人的感染为由于N 二 Nsi -JNidt-Ni每天治愈的人数每天确诊的人数每天死亡的人数- a =- *1 =-当天病人总数 一当天疑似病人总数当天病人总数用EXCEL电子表格处理题目附件2中所给数据得:=0.055076,:- =0.038183,=0.002443。(处理数据见附件)2.2

7、 的确定(1) 确定i很明显从我们建立的模型是无法得到s、i、 i。 、 S0的解析解。 为了解决这个问题我 们用MATLAB件中龙格一库塔方法求出他们的数值解。先通过实际统计数据算出每一天的s、i、i。、S0做出它们与时间的函数图象图1,然后我们再对i取一组数,分别画出由通过模型解出的数值解随时间变化的图象图2, 将这组图象与由实际数据所得图象相比较,调试。我们发现当1.5时,理论图形与实 际图形有最佳的吻合。图形如下:图1:根据实际数据拟合的图象(画图程序见附件)图2通过数值解作出的i关于时间t的变化(画图程序见附件)09分析两个图形可知,它们的高峰期、缓解期和平稳期曲线相当符合,具有相同

8、的发 展趋势。但是在0,10的SARS期范围内,曲线变化不相同。这主要是因为在4月24日之前,没有相关数据的统计和报道,由于数据的不全,根据边界值画出来的曲线与通 过数值解得到的it曲线相比较,不能准确反映SARS产生初期时的趋势,所以边界值 应该去掉,而通过数值解模拟的曲线可以得到之前的发展趋势。并且通过对SARS蔓延期特点的分析,图2在符合所给数据反映的规律基础上,还能够模拟缺乏数据的SARS初始状态,所以曲线是合理的。(2)确定2与确定时类似,先根据实际数据画出图形图3实际数据图形然后再对匕取一组数,分别画出通过模型解出的数值解随时间变化的图象, 将这组图象与由实际数据所得图象相比较,调

9、试。发现当1.0时,理论图形与实际图形有最佳的吻合。图形如下:在0,10的初期范围内,曲线趋势不同,原因同前。整个曲线反映了疑似患者在SARS的过程中的变化规律。五、结果分析与检验(一)讨论 i t ,s t 的性质s i平面称为相平面,相轨线在相平面上的定义域(s,i)D 为D =s,i) |s_0,i _0,s i 异从模型(一)中消去dt,利用二的定义,可得di 1严-1,i0(6)ds由(6)式解得i = si- s 丄 * In()(7)bS0(二)对于合理确定的i,我们可以画出is图,图形如下:(画图程序见附件0.3由于在这个SARS病毒发展过程中,二是变化的,故可以画出二取不同值

10、时的 图形,如下取1/-=0.4192,0.2858、0.1858时的图形。Y卜 FV 11111jI11111iii111!11111 一11_111111i1111111- 1-1iii1iii_ _ _ _i_ _ _1 * -r iiii!11- T 1.1 1111111111j111!1111111111!iliiiiiii|I111Ii111!11111!1-T-iIIIII_ -JI. _ _ .-1-iiiI1111ii11iiiii_ _ _i_ _ _iijiiii-_ _ iU - _ _-T- - 1- -_ J r ii- - r-iiiIiiii_l!i1iiii

11、iiiaiii1aiiIIp1i|a1114l11I11Iiii!11iii1111iL11|ii|1i|iii11110.1 .20.30.40.6 670.3.91ir图形(相轨线)分析(3)式和(7)式,可知:1不论初始条件So,0如何,病人终会消失,即SARSft终会被消灭,亦即-0证明省略从图形上看,相轨线终将与s轴相交(t充分大)。2.设最终未被感染的健康者的比例是 s::,在(7)式中令i = 0得到方程1 sSo- ioIn 0(8)Sos 是(8)在(0,1/匚)内的根,在图形上 s::是相轨线与s轴在(0,1/匚)内交点 的横坐标。对于确定下来的=0.0383,可以代入(8

12、)式解出 s:几03.SARS疾病传染过程分析整个传染过程,随着政府和公众对SARS勺重视程度的变化,可知接触数r =忍 2随着治愈率 、死亡率 和接触率的不断变化而变化。(1)在SARS爆发的初期,由于潜伏期的存在,社会对SARS病毒传播的速度和危害程度认识不够,所以政府和公众没有引起重视。治愈率和死亡率 很小,而接触率1相对较大,所以1/二很小。当 s1/二,则 i(t)开始增加,可认为是疾病蔓延阶段。(2) 当 S0=1/;时,i(t)达到最大值1ImI。(1 In s二)(9)a对于我们确定的1=1-5,可以求出 im=0.8368,可认为是疾病传染到达了高峰期。(3)当 s1/二时,

13、i(t)单调减小至零,s(t)单调减小至 s::。这一时期病人比例 i(t) 绝不会增加,传染病不会蔓延,进入缓解期。4.群体免疫和预防根据对模型的分析,当 S。1/二是传染病不会蔓延。所以为制止蔓延,除了提高卫 生和医疗水平,使阈值1/二变大以外,另一个途径是降低 s0,这可以通过预防接种使 群体免疫。第二个途径通过预防接种使群众免疫,免疫后就不会被感染上病毒。按照我们人群 的分类系统,将免疫人群归为退出者类,所以免疫人群的出现,不与模型的分类系统相 矛盾。忽略病人比例的初始值 i0,有 s0=1-r0,于是SARS再蔓延的条件 s01/二可以表示为:1 ro_1(10) Y=polyc o

14、n f(p,t,S)Y = Colu mns 1 through 8136.3240 113.2654 102.2891 98.9706 100.0091 103.0173 106.3408 108.9028Columns 9 through 16110.0729 109.5573 107.3071 103.4430 98.1954 91.8561 84.7414 77.1647Colu mns 17 through 2469.4163 61.7507 54.3784 47.4629 41.1208 35.4237 30.4038 26.0584Columns 25 through 3222.3576 19.2498 16.6691 14.5410 12.7882 11.3350 10.1116 9.0563Colu mns 33 through 408.11817.25746.44605.6667 4.91214.18283.48552.8306Columns 41 through 482.23001.69521.23510.85510.55570.33240.17600.0733Colu mns 49 through 560.0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论