




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、化工原理课程设计说明书设计题目: 水吸收SO2填料塔的设计 姓 名 : 专 业: 学 号: 指导老师: 2015年1月5日设计任务书1 设计题目: 水吸收SO2过程填料吸收塔的设计2 设计任务: 混合气处理量:1950 m3/h 混合气中SO2含量(体积分数):33%操作压力:常压操作温度:20 设计目的: SO2的回收率不低于:99% 吸收剂的用量与最小用量比:1.1-1.53 设计内容(1)吸收塔的物料衡算; (2)吸收塔的工艺尺寸计算; (3)填料层压降的计算; (4)液体分布器简要设计; (5)吸收塔接管尺寸计算; (6)绘制吸收塔设计条件图; (7)对设计过程的评述和有关问题讨论。目
2、录第一章 绪论11.1吸收技术概况11.2吸收设备发展11.3吸收在工业生产中的应用3第二章 设计方案42.1吸收剂的选择42.2吸收流程的选择52.3吸收塔设备及填料的选择62.3.1吸收塔的设备选择62.3.2填料的选择62.4吸收剂再生方法的选择82.5操作参数的选择8第三章 吸收塔的工艺计算103.1基础物性数据103.1.1液相物性数据103.1.2气相物性数据103.1.3气液相平衡数据103.2物料衡算113.3填料塔的工艺尺寸的计算123.3.1塔径的计算123.3.2泛点率校核133.3.3填料规格校核:143.3.4液体喷淋密度校核143.4填料塔填料高度计算153.4.1
3、传质单元高度计算153.4.2传质单元数的计算173.4.3填料层高度计算173.5填料塔附属高度计算183.6 液体分布器计算183.6.1液体分布器183.6.2布液孔数213.6.3 液体保持管高度213.6.4 液体再分布器-升气管式液体再分布器223.7其他附属塔内件的选择223.7.1填料支承板223.7.2除沫器(除雾器)223.8吸收塔的流体力学参数的计算233.8.1吸收塔的压力降233.8.2吸收塔接管尺寸计算24第四章 附表与附图25工艺设计主要符号说明27设计总结29主要参考文献30第1章 绪论1.1吸收技术概况当气体混合物与适当的液体接触,气体中的一个或者几个组分溶解
4、与液体中,而不能溶解的组分仍留在气体中,使气体得以分离。吸收过程是化工生产中常用的气体混合物的分离操作,其基本原理是利用混合物中各组分在特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。实际生产中,吸收过程所用的吸收剂常需回收利用,故一般来说,完整的吸收过程应包括吸收和解吸两部分,因而在设计上应将两部分综合考虑,才能得到较为理想的设计结果。作为吸收过程的工艺设计,其一般性问题是在给定混合气体处理量、混合气体组成、温度、压力以及分离要求的条件下,完成以下工作:(1)根据给定的分离任务,确定吸收方案;(2)根据流程进行过程的物料和热量衡算,确定工艺参数;(3)依据物料及热量衡算进行过程的设
5、备选型或设备设计;(4)绘制工艺流程图及主要设备的工艺条件图;(5)编写工艺设计说明书。1.2吸收设备发展在吸收过程中,质量交换是在两相接触面上进行的。因此,吸收设备应具有较大的气液接触面,按吸收表面的形成方式,吸收设备可分为下列几类:(1)表面吸收器 吸收器中两相间的接触面是静止液面(表面吸收器本身的液面)或流动的液膜表面(膜式吸收器)。这类设备中的接触表面在相当大的程度上决定于吸收器构件的几何表面。这类设备还可分为以下几种基本类型: 水平液面的表面吸收器:在这类吸收器中,气体在静止不动或缓慢流动的液面上通过,液面即为传质表面,由于传质表面不大,所以此种表面吸收器只适用于生产规模较小的场合。
6、通常将若干个气液逆流运动的吸收器串联起来使用。为了能使液体自流,可将吸收器排列成阶梯式,即沿流体的流向,后一个吸收器低于前一个吸收器。水平液面的表面吸收器的效率极低,现在应用已很有限。只有从体积量不大的气体中吸收易溶组分,并同时需要散除热量的情况下才采用它们。这类吸收器有时还用于吸收高浓度气体混合物中的某些组分。 液膜吸收器:在液膜吸收器中,气液两相在流动的液膜表面上接触。液膜是沿着圆管或平板的纵向表面流动的。已知有三种类型的液膜吸收器: 列管式吸收器:液膜沿垂直圆管的内壁流动;板状填料吸收器:填料是一些平行的薄板,液膜沿垂直薄板的两测流动;升膜式吸收器:液膜向上(反向)流动。目前,液膜吸收器
7、应用比较少,其中最常见的是列管式吸收器,常用于从高浓度气体混合物同时取出热量的易溶气体(氯化氢,二氧化硫)的吸收。填料吸收器 填料吸收器是装有各种不同形状填料的塔。喷淋液体沿填料表面流下,气液两相主要在填料的润湿表面上接触。设备单位体积内的填料表面积可以相当大,因此,能在较小的体积内得到很大的传质表面。但在很多情况下,填料的活性接触表面小于其几何表面。 填料吸收器:填料吸收器一般作成塔状,塔内装有支撑板,板上堆放填料层。喷淋的液体通过分布器洒向填料。在吸收器内,填料在整个塔内堆成一个整体。有时也将填料装成几层,每层的下边都设有单独的支撑板。当填料分层堆放时,层与层之间常装有液体再分布装置。在填
8、料吸收器中,气体和液体的运动经常是逆流的。而很少采用并流操作。但近年来对在高气速条件下操作的并流填料吸收器给予另外很大的关注。在这样高的气速下,不但可以强化过程和缩小设备尺寸,而且并流的阻力降也要比逆流时显着降低。这样高的气速在逆流时因为会造成液泛,是不可能达到的。如果两相的运动方向对推动力没有明显的影响,就可以采用这种并流吸收器。填料吸收器的不足之处是难于除去吸收过程中的热量。通常使用外接冷却器的办法循环排走热量。曾有人提出在填料层中间安装冷却组件从内部除热的设想,但这种结构的吸收器没有得到推广。 机械液膜吸收器:机械液膜吸收器可分为两类。在第一类设备中,机械作用用来生成和保持液膜。属于这一
9、类的有圆盘式液膜吸收器。当圆盘转到液面上方时,便被生成的液膜所覆盖,吸收过程就在这一层液膜表面上进行。圆盘的圆周速度为0.20.3米/秒。这种吸收器的传质系数与填料吸收器相近。第一类设备没有什么明显的优点,并由于有转动部件的存在而使结构复杂化,同时还增加了能量消耗。因此这类设备没有得到推广。第二类设备的实用意义较大。在这类设备中,转子的转动用来使两相混合,促使传质过程得到强化。这种设备称之为“转子液膜塔”,常用于热稳定性较差物质的精馏。显然,这种设备也可用于吸收操作。(2)鼓泡吸收器在这种吸收器中,接触表面是随气流而扩展。在液体中呈小气泡和喷射状态分布。这样的气体运动(鼓泡)是以其通过充满液体
10、的设备(连续的鼓泡)或通过具有不同形式塔板的塔来实现。在充填填料的吸收器中,也可看到气体和液体相互作用的特征。这一类吸收器也包括以机械搅拌混合液体的鼓泡吸收器。鼓泡吸收器中,接触表面是由流体动力状态(气体和液体的流量)所决定的。(3)喷洒吸收器喷洒吸收器中的接触表面是在气相介质中喷洒细小液滴的方法而形成的。接触表面取决于流体动力学状态(液体流量)。这一类的吸收器有:吸收器中液体的喷洒是用喷雾器(喷洒或空心的吸收器);用高速气体运动流的高速并流喷洒吸收器;或用旋转机械装置的机械喷洒吸收器。在这些不同形式的设备中,现在最通用的是填料及鼓泡塔板吸收器。1.3吸收在工业生产中的应用在化工生产中所处理的
11、原料中间产物粗产品等几乎都是混合物,而且大部分是均相混合物,为进一步加工和使用,常需将这些混合物分离为较纯净或几乎纯态的物质。对于均相物系,要想进行组分间的分离,必须要造成一两个物系,利用原物系中各组分间某种物性的差异,而使其中某个组分(或某些组分)从一相转移到另一相,以达到分离的目的。物质在相间的转移过程称为物质传递过程。吸收单元操作是化学工业中常见的传质过程。气体的吸收在化工生产中主要用来达到以下几种目的 :(1)有用组分的回收。例如用硫酸处理焦炉气以回收其中的二氧化硫,用气油处理焦炉气以回收其中的芳烃,用液态烃处理裂解气以回收其中的乙烯、丙烯等。(2)原料气的净化。例如用水和碱液脱除合成
12、二氧化硫原料气中的二氧化碳,用丙酮脱除裂解气中的乙炔等。(3)某些产品的制取。例如用水吸收二氧化氮以制造硝酸,用水吸收氯化氢以制备盐酸,用水吸收甲醛以制备福尔马林溶液等。(4)废气的治理。例如:电厂的锅炉尾气含二氧化硫。硝酸生产尾气含一氧化氮等有害气体,均须用吸收方法除去。38第二章 设计方案2.1吸收剂的选择对于吸收操作,选择适宜的吸收剂,具有十分重要的意义。其对吸收操作过程的经济性有着十分重要的影响。一般情况下,选择吸收剂,要着重考虑如下问题。(一)对溶质的溶解度大所选的吸收剂多溶质的溶解度大,则单位量的吸收剂能够溶解较多的溶质,在一定的处理量和分离要求下,吸收剂的用量小,可以有效地减少吸
13、收剂循环量,这对于减少过程功耗和再生能量消耗十分有利。另一方面,在同样的吸收剂用量下,液相的传质推动力大,则可以提高吸收速率,减小塔设备的尺寸。(二)对溶质有较高的选择性对溶质有较高的选择性,即要求选用的吸收剂应对溶质有较大的溶解度,而对其他组分则溶解度要小或基本不溶,这样,不但可以减小惰性气体组分的损失,而且可以提高解吸后溶质气体的纯度。(三)不易挥发吸收剂在操作条件下应具有较低的蒸气压,以避免吸收过程中吸收剂的损失,提高吸收过程的经济性。(四)再生性能好由于在吸收剂再生过程中,一般要对其进行升温或气提等处理,能量消耗较大,因而,吸收剂再生性能的好坏,对吸收过程能耗的影响极大,选用具有良好再
14、生性能的吸收剂,往往能有效。以上四个方面是选择吸收剂时应考虑的主要问题,其次,还应注意所选择的吸收剂应具有良好的物理、化学性能和经济性。其良好的物理性能主要指吸收剂的粘要小,不易发泡,以保证吸收剂具有良好的流动性能和分布性能。良好的化学性能主要指其具有良好的化学稳定性和热稳定性,以防止在使用中发生变质,同时要求吸收剂尽可能无毒、无易燃易爆性,对相关设备无腐蚀性(或较小的腐蚀性)。吸收剂的经济性主要指应尽可能选用廉价易得的溶剂。表1 工业常用吸收剂溶质吸收剂溶质吸收剂氨水、硫酸硫化铵碱液、砷碱液、有机溶剂丙酮蒸汽水苯蒸汽煤油、洗油氯化氢水丁二烯乙醇二氧化碳水、碱液、碳酸烯酯二氯乙烯煤油二氧化硫水
15、一氧化碳铜氨液2.2吸收流程的选择 工业上使用的吸收流程多种多样,可以从不同角度进行分类,从所选用的吸收剂的种类看,有仅用一种吸收剂的一步吸收流程和使用两种吸收剂的两步吸收流程,从所用的塔设备数量看,可分为单塔吸收流程和多塔吸收流程,从塔内气液两相的流向可分为逆流吸收流程、并流吸收流程等基本流程,此外,还有用于特定条件下的部分溶剂循环流程。(一)一步吸收流程和两步吸收流程一步流程一般用于混合气体溶质浓度较低,同时过程的分离要求不高,选用一种吸收剂即可完成任务的情况。若混合气体中溶质浓度较高且吸收要求也高,难以用一步吸收达到规定的吸收要求,但过程的操作费用较高,从经济性的角度分析不够适宜时,可以
16、考虑采用两步吸收流程。(二)单塔吸收流程和多塔吸收流程单塔吸收流程是吸收过程中最常用的流程,如过程无特别需要,则一般采用单塔吸收流程。若过程的分离要求较高,使用单塔操作时,所需要的塔体过高,或采用两步吸收流程时,则需要采用多塔流程。典型的是双塔吸收流程。(三)逆流吸收与并流吸收吸收塔或再生塔内气液相可以逆流操作也可以并流操作,由于逆流操作具有传质推动力大,分离效率高(具有多个理论级的分离能力)的显著优点而 广泛应用。工程上,如无特别需要,一般均采用逆流吸收流程。(四)部分溶剂循环吸收流程由于填料塔的分离效率受填料层上的液体喷淋量影响较大,当液相喷淋量过小时,将降低填料塔的分离效率,因此当塔的液
17、相负荷过小而难以充分润湿填料表面时,可以采用部分溶剂循环吸收流程,以提高液相喷淋量,改善踏的操作条件。2.3吸收塔设备及填料的选择2.3.1吸收塔的设备选择塔型的合理选择是做好塔设备设计的首要环节,选择时应考虑的因素有:物料性质、操作条件、塔设备性能、以及塔设备的制造、安装、运转和维修等。(一) 与物性有关的因素:如易起泡的物系,处理量不大时,选填料塔为宜。具有腐蚀性的介质,也可选用填料塔。具有热敏性的物料须减压操作,可采用装填规整的散堆填料。粘性较大的物系,可以选用大尺寸填料。(二) 与操作条件有关的因素:气相传质阻力大,宜采用填料塔。大的液体负荷,可选用填料塔。低的液体负荷,不宜采用填料塔
18、。液气比波动的适应性,板式塔优于填料塔。(三) 其它因素对于吸收过程,能够完成其分离任务的塔设备有多种,如何从众多的塔设备中选出合适的类型是进行工艺设计的首要工作。而进行这一项工作则需对吸收过程进行充分的研究后,并经多方案对比方能得到较满意的结果。一般而言,吸收用塔设备与精馏过程所需要的塔设备具有相同的原则要求,即用较小直径的塔设备完成规定的处理量,塔板或填料层阻力要小,具有良好的传质性能,具有合适的操作弹性,结构简单,造价低,易于制造、安装、操作和维修等。但作为吸收过程,一般具有操作液起比大的特点,因而更适用于填料塔。此外,填料塔阻力小,效率高,有利于过程节能,所以对于吸收过程来说,以采用填
19、料塔居多。但在液体流率很低难以充分润湿填料,或塔径过大,使用填料塔不经济的情况下,以采用板式塔为宜。2.3.2填料的选择 填料是填料塔中传质元件,它可以有各种不同的分类:如按性能分为通用填料和高效填料;按形状分为颗粒型填料和规整填料。填料品种很多,最古老的填料是拉西环;在国外被认为较为理想的是鲍尔环,矩鞍填料和波纹填料等工业填料,现经测试验证,已被推荐为我国今后推广使用的通用型填料,填料的材质可为金属、陶瓷或塑料。各种填料的结构差异较大,具有不同的优缺点,因此在使用上应根据具体情况选择不同的塔填料。在选择塔填料时,应该考虑如下几个问题: (1) 选择填料材质 选择填料材质应根据吸收系统的介质以
20、及操作温度而定,一般情况下,可以选用塑料,金属,陶瓷等材料。对于腐蚀性介质应采用相应的抗腐蚀性材料,如陶瓷,塑料,玻璃,石墨,不锈钢等,对于温度较高的情况,应考虑材料的耐温性能。(2) 填料类型的选择 填料类型的选择是一个比较复杂的问题。一般来说,同一类填料塔中,比表面积大的填料虽然具有较高的分离效率,但是由于在同样的处理量下,所需要的塔径较大,塔体造价升高。(3) 填料尺寸的选择 实践表明,填料塔的塔径与填料直径的比值应保持不低于某一下限值,以防止产生较大的壁效应,造成塔的分离效率下降。一般来说,填料尺寸大,成本低,处理量大,但是效率低,使用大于50mm的填料,其成本的降低往往难以抵偿其效率
21、降低所造成的成本增加。所以,一般大塔经常使用50mm的填料。但在大塔中使用小于2025mm填料时,效率并没有较明显的提高,一般情况下,可以按表选择填料尺寸。因此对于水吸收S02的过程、操作、温度及操作压力较低,工业上通常选用所了散装填料。在所了散装填料中,塑料阶梯环填料的综合性能较好,故此选用塑料阶梯环填料。表2 填料尺寸与塔径的对应关系塔径/填料尺寸/D300300D900D9002025253850802.4吸收剂再生方法的选择依据所用的吸收剂不同可以采用不同的再生方法,工业上常用的吸收剂再生方法主要有减压再生,加热再生及气提再生等。(一)减压再生(闪蒸)吸收剂的减压再生是最简单的吸收剂再
22、生方法之一。在吸收塔内,吸收了大量溶质后的吸收剂进入再生塔并减压,使得溶如吸收剂中的溶质得以再生。该方法最适用于加压吸收,而且吸收后的后续工艺处于常压或较低压力的条件,如吸收操作处于常压条件下进行,若采用减压再生,那么解吸操作需在真空条件下进行,则过程可能不够经济。(二)加热再生加热再生也是吸收剂再生最常用的方法。吸收了大量溶质后的吸收剂进入再生塔内并加热使其升温,溶入吸收剂中的溶质得以解吸。由于再生温度必须高于解吸温度,因而,该方法最适用于常温吸收或在接近于常温的吸收操作,否则,若吸收温度较高,则再生温度必然更高,从而,需要消耗更高品位的能量。一般采用水蒸汽作为加热介质,加热方法可以依据具体
23、情况采用直接蒸汽加热或采用缉间接蒸汽加热。(三)气提再生气提再生是在再生塔的底部通入惰性气体,使吸收剂表面溶质的分压降低,使吸收剂得以再生。常用气提气体是空气和水蒸气。2.5操作参数的选择吸收过程的操作参数主要包括吸收(或再生)压力、吸收(或再生)温度以及吸收因子(或解析因子),这些条件的选择应充分考虑前后工序的工艺参数,从整个过程的安全性、可靠性、经济性出发,利用过程的模拟计算,经过多方案对比优化得出过程参数。(一)操作压力的选择对于物理吸收,加压操作一方面有利于提高吸收过程的传质推动力而提高过程的传质速率,另一方面,也可以减小气体的体积流率,减小吸收塔径。所以 操作十分有利.但工程上,专门
24、为吸收操作而为气体加压,从过程的经济性角度看是不合理的,因而若在前一道工序的压力参数下可以进行吸收操作的情况下,一般是以前道工序的压力作为吸收单元的操作压力。对于化学吸收,若过程由质量传递过程控制,则提高操作压力有利,若为化学反应过程控制,则操作压力对过程的影响不大,可以完全根据前后工序的压力参数确定吸收操作压力,但加大吸收压力依然可以减小气相的体积流率,对减小塔径仍然是有利的。对于减压再生(闪蒸)操作,其操作压力应以吸收剂的再生要求而定,逐次或一次从吸收压力减至再生操作压力,逐次闪蒸的再生效果一般要优于一次闪蒸效果。(二)操作温度的选择对于物理吸收而言,降低操作温度,对吸收有利。但低于环境温
25、度的操作温度因其要消耗大量的制冷动力而一般是不可取的,所以一般情况下,取常温吸收较为有利。对于特殊条件的吸收操作必须采用低于环境的温度操作。对于化学吸收,操作温度应根据化学反应的性质而定,既要考虑温度对化学反应速度常数的影响,也要考虑对化学平衡的影响,使吸收反应具有适宜的反应速度。对于再生操作,较高的操作温度可以降低溶质的溶解度,因而有利于吸收剂的再生。(三)吸收因子的选择吸收因子是一个关联了气体处理量,吸收剂用量以及气液相平衡常数的综合的过程参数.式中 -气体处理量, ;L-吸收剂用量,; m-气体相平衡常数。第三章 吸收塔的工艺计算3.1基础物性数据3.1.1液相物性数据对低浓度吸收过程,
26、溶液的物性数据可近似取纯水的物性数据。由手册查得,20时水的有关物性数据如下: 密度为 L=998.2 kg/m3粘度为 L=0.001 Pa·s=3.6kg/(m·h)表面张力为L=72.6dyn/cm=940896 kg/h2SO2在水中的扩散系数为 DL=1.47×10-5cm2/s=5.29×10-6m2/h3.1.2气相物性数据进塔混合气体温度为20,M空气=29kg/mol Mso2=64kg混合气体的平均摩尔质量为 混合气体的平均密度为混合气体的粘度可近似取为空气的粘度,查手册得20空气的粘度为 G=1.81 ×10-5Pas=0
27、.065kg/(mh)查手册得SO2在空气中的扩散系数为 DV=1.08×10-5m2/s=0.039 m2/h3.1.3气液相平衡数据由手册查得,常压下20时SO2在水中的亨利系数为 E=3.55 ×103 kPa相平衡常数为 m=E/P=3.55×103/101.3=35.04溶解度系数为3.2物料衡算进塔气相摩尔比为出塔气相摩尔比比为进塔惰性气相流量为该吸收过程属于低浓度吸收,平衡曲线可近似为直线,最小液气比可按下式计算,即对于纯溶剂吸收过程,进塔液相组成为取操作液气比为3.3填料塔的工艺尺寸的计算3.3.1塔径的计算空塔气速的确定通常由泛点气速来确定空塔操
28、作气速。泛点气速是填料塔操作气速的上限,填料塔的操作气速必须小于泛点气速,操作空塔气速与泛点气速之比称为泛点率。填料的泛点气速可由Eckert通用关联图查得, 气相质量流量为液相质量流量可以近似按纯水的流量计算,即Eckert通用关联图的横坐标为: 图一:填料塔泛点和压降的通用关联图查图得: 选用25mm×25mm×2.5mm乱堆瓷拉西环。 填料因子=450m-1 =1 取 由 圆整塔径,取以上式中:泛点气速,; -空塔气速 ;液体密度,;气体密度,;,气液相质量流量,;g重力加速度,9.81;液体黏度,; -填料因子,1/ m;3.3.2泛点率校核泛点率校核:(在允许范围
29、内)对于散装填料,其泛点率的经验值为:所以符合。3.3.3填料规格校核:填料规格校核 (在允许范围内)3.3.4液体喷淋密度校核填料塔的液体喷淋密度是指单位时间、单位塔截面上液体的喷淋量,其计算式为: 式中:液体喷淋密度,; 液体喷淋量,; 填料塔直径,。为使填料能获得良好的润湿,塔内液体喷淋量应不低于某一极限值,此极限值称为最小喷淋密度,以表示。对于散装填料,其最小喷淋密度通常采用下式计算: 式中:最小喷淋密度,; 最小润湿速率,; 填料的总比表面积,。最小润湿速率是指在塔的截面上,单位长度的填料周边的最小液体体积流量。取最小润湿速率:=0.08本次设计选用瓷拉西环填料,其=190,代入数值
30、,得最小喷淋密度为:=最小喷淋密度的校核:求得液体喷淋密度为:= 所以液体喷淋密度符合要求,即填料塔直径合理。3.4填料塔填料高度计算3.4.1传质单元高度计算气相总传质单元高度采用修正的恩田关联式计算:查参考书得液体质量通量为气膜吸收系数有下式计算:气体质量通量为: 液膜吸收系数由下式计算:由 ,查参考书得则因为,故需要校正。由,得 则有 由3.4.2传质单元数的计算 脱吸因数为气相总传质单元数为:3.4.3填料层高度计算由 得根据设计经验,填料层设计高度一般为 因此取 设计取填料层高度为查拉西环高度推荐值表对于 , hmax4取,则 计算得填料塔高度为7000mm,故不需分段.表1散装填料
31、分段高度推荐值填料类型拉西环矩鞍鲍尔环阶梯环环矩鞍h/D2.558510815815/m466663.5填料塔附属高度计算塔上部空间高度可取1.2m,塔底液相停留时间按1min考虑,则塔釜所占空间高度为考虑到气相接管所占空间高度,底部空间高度可取2m,所以塔的附属空间高度可以取为1.2+2=3.2米。因此塔的实际高度取H=7+3.2=10.2(m)3.6 液体分布器计算3.6.1液体分布器 液体分布装置的种类多样,有喷头式、盘式、管式、槽式及槽盘式等。工业应用以管式、槽式及槽盘式为主。1.液体分布器设计的基本要求。性能优良的液体分布器设计时必须满足以下几点:(1)液体分布均匀 评价液体分布的标
32、准是:足够的分布点密度;分布点的几何均匀性;降液点间流动的均匀性。 分布点密度 液体分布器分布点密度的选取与填料类型及规格、塔径大小、操作条件等密切相关,各种文献推荐的值也相差较大。大致规律是:塔径越大,分布点密度越小;液体喷淋密度越小,分布点密度越大,对于散装填料,填料尺寸越大,分布点密度越小。表3-1列出了散装填料塔的分布点密度推荐值表2 Eckert的散装填料塔分布点密度推荐值塔径,mm分布点密度,塔截面D=400330D=750170D120042 分布点的几何均匀性 分布点在塔截面上的几何均匀分布是较之分布点密度更为重要的问题。设计中,一般需要通过反复计算和绘图排列,进行比较,选择最
33、佳方案。分布点的排列可采用正方形、正三角形等不同方式。 降液点间流动的均匀性 为保证各分布点的流动均匀需要分布器总体的设计合理。精细的制作和正确的安装,高性能的液体分布器,要求各分部点与平均流动的偏差小于6%(2)操作弹性大 液体分布器的操作弹性,是指液体的最大负荷与最小负荷之比。设计中,一般要求液体分布器的操作弹性为24,对于液体负荷变化很大的工艺过程,有时要求操作弹性达到10以上,此时,分布器必须特殊设计。(3)自由截面积大 液体分布器的自由截面积是指气体通道占塔截面积最小应在35%以上。(4)其他 液体分布器应结构紧凑、占用空间小、制造容易、调整和维修方便。按Eckert建议值,D120
34、0mm时,喷淋点密度为42点m2,因该塔液相负荷较大,设计取喷淋点密度为100点m2。2.液体分布装置也称为液体喷淋装置。填料塔操作时,在任一横截面上保证气液的均匀分布十分重要。液体分布装置的作用是使液体的初始分布尽可能地均匀,设计液体分布装置的原则应该是能均匀分散液体,通道不易堵塞、结构简单、制造检修方便等。为了使液体初始分布均匀,原则上应增加单位面积上的喷淋点数,但是,由于结构的限制,不可能将喷淋点设计的很多,同时如果喷淋点数过多,必然使每股的液流的流量过小,也难以保证均匀分配。此外,不同填料对液体均匀分布的要求也有差异。如高效填料因流动不均匀对效率的影响十分敏感,孤影有较为严格的均匀分布
35、要求。常用的填料喷淋点数可参照下列指标:时,每30cm 2塔截面设计一个喷淋器时,每60cm 2塔截面设计一个喷淋器时,每240cm 2 塔截面设计一个喷淋器任何程度的壁流都会降低效率,因此在靠塔壁的10%塔径区径内,所分布的流量不应超过总流量的10%。液体喷淋装置的安装位置,通常需高于填料层表面150300mm,以提供足够的自由空间,让上身气流不受约束地穿过喷淋器。液体喷淋装置的类型很多,国内常用的有下列几种(一) 管式喷淋器 几种结构简单的管式喷淋器有弯管式、缺口式、液体直接向下流出,为避免水冲击瓷环现象,在流出口下面加有一块圆形挡板,这两种喷射器一般只用于塔径300mm以下的情况。多孔直
36、管式(适用于600mm以下的塔),多孔盘管式(适用于直径1.2mm以下的塔),在管底部钻24排直径36mm的小孔,孔的总截面积大致与进液管截面积相等。 必须注意,饭开有小孔的喷淋器都要求料液不含沉淀或其他悬浮颗粒,否则易于堵塞。(二) 莲蓬式喷洒器 莲蓬式喷洒器是开有许多小孔的球面分布器。液体借助泵或高位槽的静压头,经分布器上的小孔喷出。喷洒半径的大小随液体压头和分布其高度不同而异,在探头稳定的场合,可达到较为而均匀的喷淋效果。 莲蓬式喷洒器结构简单,应用较为广泛,缺点是小孔容易堵塞,它一般用于直径600mm以下的塔中。通常安装在填料塔上方中央处,离开填料表面的距离为塔径的1/21。莲蓬头直径
37、约为塔径的20%30%。 小孔直径为315mm。球面半径为(0.51.0)d。喷洒角80o。喷洒外圈距塔壁x=70100mm。莲蓬高度y=(0.51.0)D。(三) 盘式分布器 盘式分布器是一种分布效果较好的结构。其作用原理是液体通过进液管加到淋洒盆内,然后由淋洒盆围板的上边缘溢流或通过喷洒盆上的小孔或管子,是液体淋洒到填料上。盆式喷淋器的结构简单,液体通过时的阻力较小,其分布比较均匀,这种分布器适用于直径大于0.8m的塔。(四) 冲击式淋洒器 冲击式淋洒器,其优点是喷洒半径大(最高时可达3m),液体流量大约为50200m3/h, 结构简单,不会堵塞。缺点是改变液体流量或液体压头时会影响半径,
38、因此应在操作比较恒定计较小直径下使用。3.6.2布液孔数1液体分布器的选型:根据该吸收塔液相负荷较大,而气相负荷相对较低的物系性质可选用槽式液体分布器。2分布点密度计算按Eckert建议值,D1200时,喷淋点密度为422,因该塔液相负荷较大,设计取喷淋点密度为1202 。总布液孔数为 n= 0.785×1.42 ×120=184.6点185点分布点采用三角形排列,实际设计布点数位n=185点。图二:槽式液体分布器二级槽的布液点示意图3.6.3 液体保持管高度液体保持管高度:取布液孔直径为14mm,值由小孔液体流动雷诺数决定可取因此,取.则液位保持管中的液位高度可得(为孔流
39、系数)在150mm500mm之间符合要求。h*=1.15×h=1.15×0.058=0.0667(m)=66.7(mm)3.6.4 液体再分布器-升气管式液体再分布器在离填料顶面一定距离处,喷淋的液体便开始向塔壁偏流,然后沿塔壁下流,塔中心处填料的不到好的润湿,形成所谓的“干锥体”的不正常现象,减少了气液两相的有效接触面积。因此每隔一定的距离设置液体再分布装置,以克服此现象。 由于塔径为1400mm,因此可选用升气管式再分布器,分布外径1280mm,升气管数8。3.7其他附属塔内件的选择本装置的直径较小可采用简单的进气分布装置,同时排放的净化气体中的液相夹带要求严格,应设除
40、液沫装置,为防止填料由于气流过大而是翻,应在填料上放置一个筛网装置,防止填料上浮。3.7.1填料支承板填料支承板既要具备一定的机械强度以承受填料层及其所持液的重量,又要立出足够的空隙面积供气、液流通,气体通过支承板的空隙的线速度不能大于通过填料层空隙的线速度,否则便会在填料层内尚未发生液泛之前,已在支承板处发生液泛,一般要求支承板的自由截面积与塔截面积之比大于填料层的孔隙率。最简单的支承装置是用扁钢条制作的格栅或开孔的金属板(亦有特制的陶瓷开孔板以适应耐腐蚀要求)。格栅的间隙或孔板的孔径如果过大,容易使填料落下,此时可用支承装置上先铺一层尺寸较大的同类填料。3.7.2除沫器(除雾器)若由塔设备
41、出来的气相没有大量雾沫夹带,则不需要考虑除雾问题,但在有些情况下,例如塔顶液体喷淋装置产生的测液现象较严重,操作中得空塔气速过大,或者工艺过程不允许出来的气相中夹带雾滴,此时则需要考虑加装除雾装置,常用的除雾装置介绍如下:(一) 折板除雾器 这是一种最为简单有效的结构。除雾板由50mm *50mm*3mm的角钢组成,板间横向距离为25mm,垂直流过的气速可按下式计算(二) 丝网除雾器这是一种效率较高的除雾器,可除去大于5µm的液滴,效率可达98%99%,但压强降较折流板式除雾器为大,约为0.245kpa,且不适用于气液中含有粘结物或固体物质(例如碱液或碳酸氢铵溶液等),因为液体蒸发后
42、留下固体物质容易堵塞丝网孔,影响塔的正常操作。丝网盘高H一般取100150mm丝网可用金属或塑料为材料制成。支承丝网的栅板应具有大于90%的自由截面积。 此外,填料塔常用的除雾器装置还有干填料除雾器(在液体喷淋装置与气体出口管制见状一段干填料),这种除雾方法用得较多,效果与折板除雾器相仿。3.8吸收塔的流体力学参数的计算3.8.1吸收塔的压力降(1)气体进出口压降:取气体进出口接管的内径为152mm,则气体的进出口流速为则进口压强为 (突然扩大 =1) 出口压强为 (突然缩小 =0.5)(2)填料层压降:气体通过填料层的压降采用Eckert关联图计算,其中横坐标为查参考书得纵坐标为Y=0.01
43、175查通用关联图得:P/Z=0.2kPa/m 填料层压力降P=0.2×7=1.4kPa(3)其他塔内件的压降:其他塔内件的压降较小,在此处可以忽略.所以吸收塔的总压降为3.8.2吸收塔接管尺寸计算一般管道为圆形,d为内径,水流速为0.53m/s常压下气体流速 1030m/s则气体进口直径 气体出口直径 d2=d1=152mm喷液进口直径 喷液出口直径 d4=d3=182mm排液口直径 d5=d3/2=91mm第四章 附表与附图附录(一) 水的物性数据表温度t/密度/kg/m3黏度/m.Pa.s表面张力0999.91.78975.65999.81.54774.910999.71.30
44、574.115999.01.15573.420998.21.00572.6725997.080.893771.9530995.70.80171.235994.00.72770.440992.20.65369.6(查自:化工原理实验附表)附录(二) 塔径与填料公称直径的比值D/d的推荐值填料种类D/d的推荐值拉西环鞍环鲍尔环阶梯环>815环矩鞍D/d>8(查自:化工单元过程及设备课程设计)附录(三) 贝恩(Bain)-霍根(Hougen)关联式中的A、K值散装填料类型AK规整填料类型AK塑料鲍尔环0.09421.75金属丝网波纹填料0.301.75金属鲍尔环0.11.75塑料丝网波纹填料0.42011.75塑料阶梯环0.2041.7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年国学知识竞赛中国古代历史知识竞赛题库及答案
- 2025年煤矿安全检查考试题及答案
- 2025成人住院患者跌倒风险评估及预防试题及答案
- 新建医用拭子管、喂食袋生产项目环境影响评价报告表
- 跨境电商农业产品认证与质量追溯系统考核试卷
- 工业矿物市场分析考核试卷
- 数字化展览趋势考核试卷
- 仪表在冶金工业中的应用考核试卷
- 激励方案在人事培训中的实施保障机制考核试卷
- 2024年新疆温泉县普通外科学(副高)考试题含答案
- 2025年高端医疗服务市场康复医疗服务与服务模式创新实践
- 2025年厂级员工安全培训考试试题及答案
- 隔离品区管理办法
- 2025年新修订治安管理处罚法课件
- 电网技术改造及检修工程定额和费用计算规定2020 年版答疑汇编2022
- 高中英语必背3500单词表完整版
- 电网工程设备材料信息参考价2025年第一季度
- 团员组织关系转接介绍信(样表)
- (新版)中国联通政企智慧运营考试题库(含答案)
- 湖北省高中毕业生登记表学籍管理表成绩单学年评语表档案文件完整版
- 钢结构吊装记录(新版)
评论
0/150
提交评论