版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、混凝土应力实验一、实验介绍直径很小的钢纤维用于混凝土结构可以大大的提高混凝土的 抗拉承载能力。在一般情况下混凝土中掺钢纤维的体积比例在0.2 %2.0 %之间。在很小比例下,钢筋混凝土的张拉响应可假设为不硬化的类型,它有加大单个裂缝扩展性质很像无钢筋的素混凝土,钢纤维对混凝土开裂之后性能的改善作用更加明显,可以通过控制裂缝的开展从而较大幅度地提高混凝土的韧性。然而它对其它性质的改进很小,因此在正常实验方法下如此低得的纤维 含量很难难得到钢纤维混凝土轴拉应力应变曲线的平稳段。 为了找到一个合适易行的方法来研究 SFRC 轴拉性能人们做了很 多工作并且有报告称可通过添加刚性组件方法来获得轴拉全曲在
2、这篇文章中 ,我们将用不同类型的纤维来做钢筋混凝土的单 轴拉伸试验。 钢筋混凝土的抗拉特型首钢纤维的强度和含量影响。 另外,在强力作用下,钢筋混凝土的应力应变曲线受多种因 素的影响。对纤维混凝土增强机理进行研究,要获得钢纤维混凝 土的受拉全过程曲线,采用轴拉方法最为适宜,但是要在试验方 法上作一定改进,并且试验机要有足够的刚度,来保证试验过程 的稳定。众所周知,在工程实践过程中,由于施工技术及经济条 件的限制, SFRC 中纤维体积掺率一般不超过 2% ,而大部分工程 实例中,纤维掺量都在 1% 左右。为此,本文设计了轴拉 SFRC 材料试验,纤维掺量取 1% ,并采用不同种类的纤维增强形式,
3、进 行对比分析 二、实验内容试验在 60 吨万能试验机上进行。 在试验装置中添加了四个高 强钢杆以增大试件的卸载刚度,并通过在试件两端添加球铰来消 除试件的初始偏心率。通过调节连接试件和横梁的四个高强螺栓来保证试件的轴心 受拉。试件相对两侧面之间的拉应变值之差不得大于其平均值的 15 。当钢纤维掺量很低(为零或 0.5 时),在荷载峰值采用低 周反复加载曲线的外包络线来获得轴拉应力应变全曲线.。2.1 材料由四种不同类型的钢纤维用于该试验,这些纤维中三种是带 钩的(和)一种是光滑的。试验中所采用的三种混凝土配合比用于研究,见于表一。在基体强度等级为 C60 和 C80 钢纤维混凝土中分别加入了
4、大连建科 院生产的 DK 一 5 型减水剂和瑞士 Sika 公司生产的液体减水剂。 这些被用来研究钢纤维混凝土的 C30,C60,C80 混凝土被制成的试 件,在标准情况下养护 28 天。三种试件的平均强度见于表一。水 泥采用大连小野田水泥厂生产的 32.5 级和 52.5 级普通硅酸盐水 泥。细骨料米用细度模数 2 . 6的河砂。粗骨料米用 520石灰岩碎石。水泥水泥沙的比u/c沙屈服强碱水压缩强度Kg/m 3率度剂强度(ISO)Kg/m 3Kg/m 3MpaC3032.54500.440.36667118532.07C6052.55000.350.336121223DK-567.59C80
5、52.56000.290.315351191Sika82.962.2、试件用建筑结构胶将轴拉试件粘贴于两端的钢垫板上。22组共110个试件的具体参数。2.3、补充经过28天,普通混凝土和钢纤维混凝土分别被用来做抗拉强 度试验。张拉应力一一应变曲线由此获得。对于高强度钢纤维混 凝土诸如抗拉能力等拉伸特性也由此得到。增强类钢纤维混凝土 比增韧类钢纤维混凝土的强度平均提高13% ;而由基本开裂至裂 缝宽度为0.5mm 区间(相应的应变约 2000卩)的断裂能积分则显示:增韧类钢纤维混凝土比增强类钢纤维混凝土的断裂能平均提 高 20%. 由表 3 还可以看出, 大部分 SFRC 第一峰值对应的极限拉应
6、变值与素混凝土相当,在100卩£左右,这说明低含率纤维的掺入对提高混凝土的极限拉应变作用不很明显。而增韧类 SFRC 第 二峰值对应的应变则大大提高,可达1000卩£,由此可知第二峰值的出现大大提高了材料的韧性。 DRAMIX 型纤维因为长度是其它 三种纤维长度的 2 倍,其断裂韧性更好,在试验曲线中可以看出 在应变达到后,其荷载强度仍然保持较高水平,直到10000卩&应变时荷载仍可保持其峰值水平的 50% 左右。三、试验结果和分析3.1 劈拉强度和轴拉极限强度不同试件的劈拉强度和轴拉极限强度查表,在混凝土中增加钢纤维的量可以提高它的劈拉强度和轴拉极限强度,两种不同
7、参 数的钢纤维钢筋混凝土和普通混凝土(它们的混合比例相同)的比率也可查表。3.1.1 基体强度及纤维类型对轴拉强度的影响从上我们可以看出钢纤维对初裂强度的增强作用受基体强度 变化的影响很小。也就是说在掺人同种钢纤维时,随着基体强度 的增加,钢纤维混凝土与同配比素混凝土的初裂强度的比值基本 恒定然而,不同情况下的极限抗拉强度是不一样的,当基体强度 增加时,对于不同类型的钢纤维,极限抗拉强度的分配量是不同 的。另外它的增加量比劈拉恰强度大F1 型钢纤维作为基体的极限抗拉强度很高,这是因为这类型的钢纤维的强度很高(大于 1100MPa )试验过程中没有纤维拔断 的现象出现而且当基体强度较高时 (C8
8、0) ,钢纤维的端部弯钩被完 全拉直。由于黏结强度的提高,基体强度越高,该纤维对高强混 凝土轴拉极限强度的增强效果越好。 F2 和 F3 型钢纤维的强度较 高,二者均有端部弯钩,并且表面较为粗糙,当基体强度较高时 (C80) ,出现纤维拔断现象,该现象的出现对这两种钢纤维的增强 效果产生了消极影响,因此为了最大限度的发挥这两种钢纤维的 增强作用,应将其应用于中高强度混凝土中。F4 型纤维为长直型,其与基体问的粘结力较小,因此它的增 强效果耍弱于其他二种。因为其与基体问的粘结力较小因此在试 验过程中没有纤维拔断现象出现。并且随着基体强度升高,由于 黏结力的增大,该纤维增强效率有持续提高3.1.2
9、 钢纤维掺量对轴拉强度的影响试验中重点针对 F3 型钢纤维研究了纤维掺量的变化对钢纤 维高强混凝土轴拉初裂强度和极限强度的影响。试验中钢纤维体 积掺率变化范围为 0.5-1.5 。可见随着纤维掺量增大,轴拉初裂强 度和极限强度均有提高。两图中曲线的上升趋势很相似。也就是 说纤维掺量在整个拉伸过程中对钢纤维混凝土内拉应力的影响是 积极的和稳定的。纤维序号F10.642F20.862F30.794F40.589钢纤维钢筋混凝土轴拉极限强度可以用下式来计算:J广"'(1)式中:fft为钢纤维钢纤维轴拉极限强度轴拉极限强度;ft为同配比素混凝土轴拉极限强度;纤维类型系数有表四给出心二
10、0#心 为钢纤维体积掺率,l/d为钢纤维长径比。3.2轴拉变形性能和韧性3.2.1初裂拉应变和峰值荷载拉应变对试件四周四个夹式位移计测得的应变值进行平均获得试件 的拉应变值。若试验中试件相对侧面的拉应变差大于平均值的15 %,该试件作废。高强SFRC的初裂拉应变和峰值拉应变要远大于同配比素混凝土(见表5),随着基体强度或者纤维掺量增大,这个差值有所增 长,钢纤维对峰值应变的提高作用要比初裂应变更加明显。322拉伸功和轴拉韧性指数拉伸功为位移 0-0 . 5 mm轴拉荷载位移全曲线下面积 (图5中阴影面积)。另外,引入轴拉韧性指数。其定义为:m(2)式中:fft为钢纤维混凝土轴拉极限强度;A为轴
11、拉试件的破坏横截面面积两参数均用来评价钢纤维高强混凝土在轴拉过程中的韧性。轴拉韧性指数为无量纲系数,与轴拉功相比,在评价轴拉韧性时 可在一定程度上消除轴拉极限强度的差别所带来的影响。从上我们可以发现,基体强度和纤维含量两种参数的有规律 的改变很相似,因此我们分析的重点应放在韧性指数上。掺有四种钢纤维及素混凝土试件基体强度与轴拉韧性指数的关系成比例, 其中纤维混凝土试件中钢纤维体积掺率均为10。可见高强 SFRC 的轴拉韧性要远远优于同配比素混凝土。钢纤维的抗拉强度的影响是显著的,随着基体强度升高,混 凝土脆性明显增加,素混凝土轴拉韧性明显下降。在掺有 F1 和 F2 型钢纤维的试件中也出现了韧
12、性下降现象。 F1 型纤维从基体中 拔出其实是一个纤维端钩被拉直,纤维端部周围混凝土被挤碎的过程。当纤维端钩最终被拉直时,轴拉荷载很快下降。混凝土的 强度越高,基体硬度和脆性越大,上述过程历时也更短。因此当基体强度较高时,轴拉应力应变曲线下降得更快,轴拉韧性 指数也有所下降。在四种类型纤维种 F1 型纤维的增韧效果最好, F2 型纤维长 径比最小,基体强度较高时出现了纤维拔断现象,因此当基体强 度增加时韧性指数不断下降。F3 和 F4 型钢纤维韧性指数均随基体强度升高而增大。这两 种纤维均为剪切型,表面较粗糙。在钢纤维和基体之间黏结力的 各组分中,摩擦力起主导作用。摩擦力随基体强度的升高而增大
13、, 且该黏结类型的拔出破坏是一个持续过程,因此基体强度升高对 掺有这两种钢纤维的混凝土韧性起积极作用。这两种纤维的不同之处是 F3 型的两端有弯钩。 由于端钩的存在使得在基体强度不太 高时 (C30 和 C60) ,F3 型钢纤维的增韧作用优于 F4 型。当基体 强度很高时 (C80) ,由于纤维拔断现象影响了 F3 型的增韧效果, F4 型钢纤维的增韧效果叉反过来超过了 F3 型钢纤维。3.3 钢纤维钢筋混凝土单轴拉伸应力应变曲线 典型的钢纤维高强混凝土轴拉应力一应变全曲线(为了便于比较,每组试件选出条典型曲线作为代表 ),表述了轴拉曲线随基体 强度的变化规律;表述了轴拉曲线随钢纤维 (F3
14、 型 )掺量的变化规 律。曲线由弹性阶段、弹塑性阶段和下降段 (软化段 )组成。下降段 存在拐点。从上中可以看到,基体强度越高,轴拉应力一应变全曲线下降得越快。另外,钢纤维掺量的提高可以大大地改善曲线的丰满程度。钢纤维类型对轴拉应力一应变全曲线的形状也有一定的影 响。 Fl 型纤维的曲线是几种钢纤维中最丰满的,并且在拉应变为 大约 10000 个微应变时出现了第二峰值。 该现象体现了 Fl 型纤维 良好的增韧效果。当基体强度较高时,由于纤维拔断的出现使得F2 和 F3 型钢纤维试件的轴拉曲线下降端呈阶梯状。 F4 型纤维的 曲线较为平滑,形状与素混凝土曲线相似,但是更为饱满。这是 因为长直形钢
15、纤维的拔出过程是相对连续和柔和的 .四、研究分析由 4 种钢纤维混凝土的典型拉伸应力 - 应变曲线可以看出:在 轴拉条件下, 1% 掺量的钢纤维远远没有达到使混凝土材料实现应 变强化的地步,大部分试验曲线都在达到峰值后,出现荷载骤降 段。但是,随着变形的增加,有两条曲线有明显的第二峰值出现,(4)而另外两条则没有,正是根据这种现象,可以将其分为增强和增 韧两大类钢纤维混凝土,有第二峰值的为增韧类,无第二峰值的 为增强类。曾经有许多钢纤维混凝土轴拉应力一应变全曲线模型提出大 多数为分段函数,以应力峰值点为分界点。本文中,全曲线的上 升段和下降段采用不同的函数表达式。在公式(3 )中4.1上升段的
16、公式上升段的数学模型为:这里: ' 和 为与基体和钢纤维特性有关的参数。边界条件为:1) X=0,丫=0 ;2) X=0,dy / dx=E0 / Ep ;3) X=1 , 丫=1 , dy / dx=0 .由边界条件可得公式可以简化为:X)-丄如+ I - a.(5)系数 可以通过试验数据回归获得一 _ (6)0式中:E0为圆点切线模量;EP为峰值应力点割线模量(第峰值)因此公式可以转换为:X+ 0.674.2下降段公式下降段数学的模型为:(8)式中:和 为与基体和钢纤维特性有关的参数。下降段表达式中系数值选取1.7。边界条件x=l和y=1自然满足。系数的取值通过最小二乘法回归获得:
17、色=0.22 x/.:? x (I + 人)""(9)可见基体强度和纤维参量对轴拉曲线下降段的下降速率的影 响是相反的。五、理论曲线与试验结果的比较钢纤维高强混凝土轴拉应力一应变理论曲线和试验曲线的比 较如图12所示(以试件F3 6010为例)。可见,理论结果与试验结 果符合较好。六、实验结论(1)试验结果表明:钢纤维高强混凝土劈拉强度略高于轴拉强度,两者有较好的相关性,钢纤维高强混凝土轴拉强度可取为劈拉强度的 0.9 倍(2) 在掺入同种同量钢纤维时,随着基体强度的增加,钢纤维 高强混凝土与同配比素混凝土的初裂强度的比值基本不变;轴拉 极限强度的比值有所变化, 且该变化对
18、不同的纤维类型有所不同, 钢纤维与基体黏结性能好,且破坏时不被拉断,则增强效果好。(3) 提高钢纤维掺量对钢纤维高强混凝土的抗拉强度特性的改 善作用比对普通强度混凝土的改善作用明显。(4) 钢纤维高强混凝土的初裂应变和峰值应变要比素混凝土的 增幅随基体强度和纤维掺量的升高而增大。(5) 引入了轴拉韧性指数来评价钢纤维高强混凝土的韧性,钢 纤维混凝土的轴拉韧性要大大优于同配比的索混凝土,并且受基 体强度和钢纤维特性和掺量的影响(6) 基体强度越高,钢纤维高强混凝土的轴拉应力应变曲线在峰值过后下降得越快;纤维掺量的提高可以大大改善曲线的丰满程度,钢纤维类型对曲线形状也有一定的影响。通过对实验曲线
19、的分析与回归,给出了考虑上述影响因素的钢纤维高强混凝土轴 拉应力应变全曲线表达式。(7) 综合而言,四种钢纤维中, F3 型钢纤维的增强效果最好,而 Fl 型钢纤维的增韧效果最好。外文翻译原文Concrete stress test1 Test IntroductionThe tensile properties of concrete can be enhancedsubstantially by incorporating high strength and small diameter short steel fibers which leads to the steel fiber r
20、einforced concrete(SFRC) In conventional SFRC , the steel fiber content is usually within the range of 0 22 by volume At such a low 6her content the tensile response of SFRC would assume a nonhardening type which is characterized by the widening of a single crack , similar to an unreinforced concret
21、e Thecontribution of fibers is apparent in the post cracking response, represented by an increase in post cracking ductility due to the work associated with pullout of fibers bridging a failure crack.However , improvements in some other properties are insignificant Moreover ,the softening segment of
22、 the stress strain curve of SFRC with such a low fiber content under uniaxial tension is difficult to be got with normal experimental methods Many works have been done to find a suitable andrelatively easy way to analyze the tensile characteristicsAnd it was reported that the whole curve could be go
23、t on a normaltesting machine with stiffening components added.In this article , the stress strain behavior of SFRC underuniaxial tension Was analyzed for different types of fiber The tensile characteristics of SFRC influenced by the matrix strength and the steel fiber content were studied also In ad
24、dition , the stress strain curves of high strength SFRC with different factors were well acquired The mechanism of fiber reinforced concrete to enhance research, to obtain steel fiber reinforced concrete in tension curve of the whole process, using the most appropriate method of axial tension, but t
25、o make sure the testing methods improved, and the testing machine must have enough stiffness to ensure the testing process stability. Is well known inengineering practice, process, technology and economic conditions due to construction constraints, SFRC-doped fiber volume in the rate of generally no
26、t more than 2%, while most of the engineering example, the fiber fraction are about 1%. In this paper the design of the axial tension SFRC material testing, fiber dosage to take 1%, and using different types of fiber-reinforced forms, were analyzed.2 Experimental ContentThe specimens were tested on
27、a 60 kN universal testingmachine Four high steel bars were added to enhance the stiffness of the testing machine In addition ,spherichinges were used to abate the initial axial eccentricity of the specimensIt was ensured that specimens should be pulled under uniaxial tension by adjusting the four hi
28、gh strength bolts which connectthe specimens to the crossbeam And the difference between the tensile strains of the opposite sides of the specimen should be less than 1 5 of their mean value When the fiber content was low (0 and 0.5 by volume) ,the cyclic quire the whole stress strain.2 1 MaterialsF
29、our types of steel fibers shown in Table were chosen forthis test Three of these fibers (F1, F2 and F3) were hooked end and the other one(F4)was smoothThree concrete mixtures , shown in Table 2 , wereinvestigated Water reducing agents were used in C60 and C80 mixes(DK 一 5 made by Dalian Structure Re
30、search Institute andSika made in Switzerland respectively). The compressive strengths of these C30 , C60 ,C80 mixes were determined according to “Test Methods Used for Steel Fiber ReinforcedConcrete ”(CECS 13 : 89)"8 3 at 28 days using 150 mmX150 mmX150 mm cube s . Averaged results for 3 specim
31、ens are given inTable 2 0rdinary Portland cement(yielded by Dalian HuanengOnoda Cement Company)of 325 and 52 5 (according to China standard) were chosen River sand(modulus of fineness is 2.6)and crushed limestone coarse aggregates(5 20 Bin) were usedTableMatrStrenCemu/SaSanCrushWaterCompresixgthentc
32、nddedreducisivecodgradeKg/mraratiKg/StrnengStrengtheOf3tioom3Kg/m 3Mpacement(ISO)C3032.54500.40.3667115537.0746C6052.55000.30.36021223DK-567.5953C8052.56000.20.35351190Sika82.96912. 2 SpecimenThe tensile specimen was bonded to steel padding plates at both ends by tygoweld . A total of 1 1 0 specimen
33、s were divided into 22 groups according to certain parameters . The parameters of these specimens are shown in Table 32. 3 ItemsAt the age of 28 days . plain concrete and steel fiberconcrete specimens were tested for tensile strength ,respectively .The tensile stressstrain curveswereacquired Many ot
34、her tensile characters of the high strength steel fiber concrete such as tensile work , etc were calculated also. Enhanced class steel fiber reinforced concrete toughness category than the strength of steel fiber reinforced concrete an average of 13%; while cracking from the basic to the crack width
35、 of 0.5mm interval (the corresponding strain of about 2000 卩 >showed the fracture energy integral: toughening class steel fiber reinforced concrete enhanced class than the fracture energy of steel fiber reinforced concrete an average of 20%. from Table 3 also shows that most of the SFRC first pea
36、k corresponds to thelimit of tensile strain value and plain concrete rather, in the 100卩around, indicating a low rate of fiber-containing incorporationin improving the role of ultimate tensile strain of concrete is not very obvious. The toughening class SFRC second peakcorresponds to a much greater
37、strain, up to 1000卩,&From this second peak has greatly enhanced the appearance of toughness. DRAMIX Fiber because of the length of other three kinds of fiber length of 2 times the fracture toughness and better in the test curve can be seen in the strain is attained, the load continues to maintai
38、n a high level of intensity, until the strain when the load so as to maintain 10000 uJts peak level of 50%.3 Results and Discussion31 Crack stress and ultimate tensile strengthThe crack stress and ultimate tensile strength of differentspecimens are listed in Table 3 The addition of steel fibers into
39、 concrete increased its crack stress an d ultimate tensile strength And the ratios of these two parameters of SFRC to those of plain concreue (with the same mix proportion)are given in Table 3 ,too 3 11 Effect of matrix strength an(1 fiber typeFrom table 3 It can be seen that the effects of steel fi
40、bers0n crack stress are little influenced by the matsix strength That is to say When the matrix strength increases, the ratios of crack stresses of SFRC ( with the same type of fibers contained)to those of plain concrete ones with the same mix proportion are invariable However , the condition for ul
41、timate tensile strength isdifferent When the matrix strength increasesthese ratios of ultimate tensile strengths(shown in Table 3)vary dissimilarlyaccording to the type of steel fiberMoreover the increments are bigger than those of crack stressThe heightening efficiency of fiber F1 for ultimate tens
42、ilestrength rises as matrix strength increasesIt is because that thestrength of this kind of fiber is very high(>1 100 MPa) No fiber broken was observed during the test and the hooked ends of the fibers were straightened when the matrix strength was high(C80) The higher the matrix strength this k
43、ind of steel fiber takes on its strengthening effect more efficiently for theincreasing of bond stress The strengths of fibers F2 and F3 are mid high(>700 MPa) They all have hooked ends and both of their surfaces are coarse When the matrix strength was high(C80) fiber breaking occurred in the tes
44、t And this phenomenon impaired the heightening efficiency of these two kinds of steel fiber So they should be used in middle strengthconcrete to exert their strengthening effect more efficientlyFiberF4 is smooth and its bond stress with matrix is comparatively low T1erefore its strengthening effect
45、is 1ess notable thanthose of other kinds of fiber Because of the low bond stressnofiber broken was found during the test and its heightening efficiency for ultimate tensile strength rises as matrix strengthincreases 3 12 Effect of fiber contentThe effect of fiber content on the crack stress andu1 ul
46、timate tensile strength was investigated for SFRCcontained fiber F3 And the fiber content varied from 05 to 15 by volume(shown in Table 3) It can be seen from Fig 1and Fig 2 that as the fiber content increasesThe crack stress and ultimate strength of SFRC improveobviously Moreover the rising trends
47、of the curves in these twofigures are stupendously similar In other words ,the effect of fiber content on the characters of tensile stress of SFRC is positive and consistentTable 4 Fiber type factorsFiber codeatF10.642F20.862F30.794F40.589The tensile strength of SFRC can be calculated with thefollow
48、 formula :Zi = Z x (3 + “研)where , fft is the ultimate tensile strength of SFRC ; the ultimate tensile strength of plain concrete with the same mixing proportion ; a, the fiber type factor ,心二0 '7心which is shown Table 4;is the fiber content Of volume and l/d is the aspect ratio of steel fibers.3
49、. 2 Tensile strain and toughness characters3. 2. 1 Crack strain and the strain at peak tensile loadThe tensile strains were acquired by averaging the readingsof the four displacement sensors fixed around the specimen. In addition , the specimens whose difference between the tensile strains of its op
50、posite sides is larger than 15 % of their mean value were blanked outThe crack strain or the strains at peak tensile load of SFRCare much bigger than those of plain concrete(as shown in Table5). And the increments go up as the matrix strength or the fibercontent increases . Compared to that on crack
51、 strain . the increscent effect of steel fiber on the strain at peak tensile load is more remarkable3. 2. 2 Tensile work and toughness modulusThe tensile work was defined as the area under theload-displacement curve from 0 to 0. 5 rain . More over, a tensile toughness modulus was introduced(shown in
52、 Table 5)It was defined aswhere , fft is the ultimate tensile strength of SFRC ; A, the area of the cross section of specimenBoth these two parameters were quoted to evaluate thetoughness characters of SFRC under uniaxial tension Thetensile toughness modulus is a dimensionless factorComparedto what
53、the tensile work does it can avoid the influence of the ultimate tensile strength when studying the toughness of SFRCIt call be found from Table 5 that the altering regularities ofthese two factors along with the changes of matrix strength and fiber content are approximate Therefore , the emphasis o
54、f analysis was put on the toughness modulusThe relationship between the matrix strength andtoughness modulus of SFRC with four kinds of steel fiber are shown in Fig 3 whose fiber contents are all 1 O by volume together with that relationship of plain concrete Thetensile toughness of SFRC is much bet
55、ter than that of plain concrete The tensile toughening effect of steel fiber is remarkable As the matrix strength rises The brittleness ofconcrete increases obviously,and then the tensile toughness of plain concrete falls down This phenomenon was also found onspecimens containing fiber F1and F2The p
56、ulling out of fiber F1 from concrete is in fact a process of hook-end 's being straightened and the matrix 's being crushed around the hook-end When the hooked end is straightened at last thetensile load falls down quickly The higher the concrete strength.the larger the rigidity of the matrix and the shorter the time thatthe process mentioned above lastsThus the stress-strain curvefalls down more quickly , and then the toughness modulus decreases However ,the toughening effect of fiber F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金融市场拓展与发展
- 二零二五年度入学新生教育法律权益保障书3篇
- 化妆品销售保安工作总结
- 二零二五版小学校内食堂食材供应合同3篇
- 二零二五年度商业广告摄影师雇佣合同(广告创意拍摄)3篇
- 二零二五年度农业产品销售代表渠道拓展劳务合同
- 2025版旅游行业数据采集与旅游市场分析合同3篇
- 2025版石料场仓储管理承包服务协议3篇
- 二零二五年度社区老年大学教学服务合同模板3篇
- 二零二五版实习生劳动合同(含实习期间加班费计算与支付)3篇
- 比摩阻-管径-流量计算公式
- 专题23平抛运动临界问题相遇问题类平抛运和斜抛运动
- GB/T 42430-2023血液、尿液中乙醇、甲醇、正丙醇、丙酮、异丙醇和正丁醇检验
- 五年级数学应用题100道
- 西方经济学(第二版)完整整套课件(马工程)
- 高三开学收心班会课件
- GB/T 33688-2017选煤磁选设备工艺效果评定方法
- 科技计划项目申报培训
- 591食堂不合格食品处置制度
- 黑布林绘本 Dad-for-Sale 出售爸爸课件
- 京东方顶岗实习报告1
评论
0/150
提交评论