三角形的中位线_第1页
三角形的中位线_第2页
三角形的中位线_第3页
三角形的中位线_第4页
三角形的中位线_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、创设情景,导入课题创设情景,导入课题 思考:怎样将一张三角形纸片剪成两部分,思考:怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形?使分成的两部分能拼成一个平行四边形?操作:(操作:(1 1)剪一个三角形,记为)剪一个三角形,记为ABCABC (2 2)分别取)分别取AB,ACAB,AC中点中点D,ED,E,连接,连接DEDE (3 3) 沿沿DEDE将将ABCABC剪成两部分,并剪成两部分,并 将将ABCABC绕点绕点E E旋转旋转180180,得四边形,得四边形BCFD.BCFD.2 2、思考:四边形、思考:四边形BCFDBCFD是平行四边形吗?是平行四边形吗?3 3、探

2、索新结论:若四边形、探索新结论:若四边形BCFDBCFD是平行四边形,是平行四边形,那么与有什么位置和数量关系呢?那么与有什么位置和数量关系呢?三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。A AB BC CD DE E三角形中位线定理:三角形的三角形中位线定理:三角形的中位线平行于第三边,并且等中位线平行于第三边,并且等于它的一半于它的一半. .几何表示几何表示: DE是ABC的中位线 DEBC,DE=12BC教师讲授,传授新知教师讲授,传授新知师生共析,证明定理师生共析,证明定理已知:如图已知:如图6-206-20(1 1),),DEDE是是ABCABC的中位线的中位线. .

3、求证求证:DE:DEBC,DE=1BC,DE=12BC2BC证明证明: :如图如图6-20(2),6-20(2),延长延长DEDE到到F,F,使使DE=EF,DE=EF,连接连接CF.CF.在在ADEADE和和CFECFE中中AE=CE,AE=CE,1=1=2,DE=FE2,DE=FEADEADECFECFEA=A=ECF,AD=CFECF,AD=CFCFCFABABBD=ADBD=ADBD=CFBD=CF四边形四边形DBCFDBCF是平行四边形是平行四边形DFDFBC,DF=BCBC,DF=BCDEDEBC,DE=1BC,DE=12BC2BC灵活运用,自我检测灵活运用,自我检测如图如图, ,

4、任意画一个四边形,顺次连结四边形任意画一个四边形,顺次连结四边形四条边的中点,所得的四边形有什么特点?四条边的中点,所得的四边形有什么特点?请证明你的结论,并与同伴交流。请证明你的结论,并与同伴交流。已知:在四边形已知:在四边形ABCDABCD中,中,E E,F F,G G,H H分别是分别是ABAB,BCBC,CDCD,DADA的中点,如图的中点,如图4-944-94求证:四边形求证:四边形EFGHEFGH是平行四边形是平行四边形分析:分析: 已知四条线段的中点,可设已知四条线段的中点,可设法应用三角形中位线定理,找到法应用三角形中位线定理,找到四边形四边形EFGHEFGH的边之间的关系而的

5、边之间的关系而四边形四边形ABCDABCD的对角线可以把四边的对角线可以把四边形分成两个三角形,所以添加辅形分成两个三角形,所以添加辅助线,连结助线,连结ACAC或或BDBD,构造,构造“三角三角形的中位线形的中位线”的基本图形的基本图形练一练练一练: :1、 A、B两点被池塘隔开,在没有任何测量工具的情况下,小明通过下面的方法估测出了A,B间的距离:在AB外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N,如果测得MN = 20m,那么A、B两点的距离是多少?为什么 ? 2已知:三角形的各边分别为6cm,8cm, 10cm,则连结各边中点所成三角形的周长为 cm,面积为 cm2,为原三角形面积的 。 3.3.如图,在四边形如图,在四边形ABCDABCD中,中,E E、F F、G G、H H分别是分别是 ABAB、CDCD、ACAC、BDBD的中点的中点 。四边形。四边形EGFHEGFH是平行是平行 四边形吗?请证明你的结论。四边形吗?请证明你的结论。回顾小结,共同提升回顾小结,共同提升小结:小结: (1 1)这节课学习了哪些具体内容?)这节课学习了哪些具体内容? (2 2)用什么思维方法提出猜想的?)用什么思维方法提出猜想的? (3 3)应注意哪些概念之间的区别?)应注意

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论