下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、七夕,古今诗人惯咏星月与悲情。吾生虽晚,世态炎凉却已看透矣。情也成空,且作“挥手袖底风”罢。是夜,窗外风雨如晦,吾独坐陋室,听一曲尘缘,合成诗韵一首,觉放诸古今,亦独有风韵也。乃书于纸上。毕而卧。凄然入梦。乙酉年七月初七。-啸之记。 难点7 奇偶性与单调性(一)函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象.难点磁场()设a>0,f(x)=是R上的偶函数,(1)求a的值;(2)证明: f(x)在(0,+)上是增函数.案例探究例1已知函数f(x)在(1,1)上有定义,f()=1,当且仅
2、当0<x<1时f(x)<0,且对任意x、y(1,1)都有f(x)+f(y)=f(),试证明:(1)f(x)为奇函数;(2)f(x)在(1,1)上单调递减.命题意图:本题主要考查函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力.属题目.知识依托:奇偶性及单调性定义及判定、赋值法及转化思想.错解分析:本题对思维能力要求较高,如果“赋值”不够准确,运算技能不过关,结果很难获得.技巧与方法:对于(1),获得f(0)的值进而取x=y是解题关键;对于(2),判定的范围是焦点.证明:(1)由f(x)+f(y)=f(),令x=y=0,得f(0)=0,令y=x,得f(x)+f(x)=f()
3、=f(0)=0.f(x)=f(x).f(x)为奇函数.(2)先证f(x)在(0,1)上单调递减.令0<x1<x2<1,则f(x2)f(x1)=f(x2)f(x1)=f()0<x1<x2<1,x2x1>0,1x1x2>0,>0,又(x2x1)(1x2x1)=(x21)(x1+1)<0x2x1<1x2x1,0<<1,由题意知f()<0,即f(x2)<f(x1).f(x)在(0,1)上为减函数,又f(x)为奇函数且f(0)=0.f(x)在(1,1)上为减函数.例2设函数f(x)是定义在R上的偶函数,并在区间(,
4、0)内单调递增,f(2a2+a+1)<f(3a22a+1).求a的取值范围,并在该范围内求函数y=()的单调递减区间.命题意图:本题主要考查函数奇偶性、单调性的基本应用以及对复合函数单调性的判定方法.本题属于级题目.知识依托:逆向认识奇偶性、单调性、指数函数的单调性及函数的值域问题.错解分析:逆向思维受阻、条件认识不清晰、复合函数判定程序紊乱.技巧与方法:本题属于知识组合题类,关键在于读题过程中对条件的思考与认识,通过本题会解组合题类,掌握审题的一般技巧与方法.解:设0<x1<x2,则x2<x1<0,f(x)在区间(,0)内单调递增,f(x2)<f(x1),
5、f(x)为偶函数,f(x2)=f(x2),f(x1)=f(x1),f(x2)<f(x1).f(x)在(0,+)内单调递减.由f(2a2+a+1)<f(3a22a+1)得:2a2+a+1>3a22a+1.解之,得0<a<3.又a23a+1=(a)2.函数y=()的单调减区间是,+结合0<a<3,得函数y=()的单调递减区间为,3).锦囊妙计本难点所涉及的问题及解决方法主要有:(1)判断函数的奇偶性与单调性若为具体函数,严格按照定义判断,注意变换中的等价性.若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性.同时,注意判断与证明、讨论三
6、者的区别,针对所列的“磁场”及“训练”认真体会,用好数与形的统一.复合函数的奇偶性、单调性.问题的解决关键在于:既把握复合过程,又掌握基本函数.(2)加强逆向思维、数形统一.正反结合解决基本应用题目,下一节我们将展开研究奇偶性、单调性的应用.歼灭难点训练一、选择题1.()下列函数中的奇函数是( )A.f(x)=(x1)B.f(x)=C.f(x)=D.f(x)=2.()函数f(x)=的图象( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线x=1对称二、填空题3.()函数f(x)在R上为增函数,则y=f(|x+1|)的一个单调递减区间是_.4.()若函数f(x)=ax3+bx2+c
7、x+d满足f(0)=f(x1)=f(x2)=0 (0<x1<x2),且在x2,+上单调递增,则b的取值范围是_.三、解答题5.()已知函数f(x)=ax+ (a>1).(1)证明:函数f(x)在(1,+)上为增函数.(2)用反证法证明方程f(x)=0没有负数根.6.()求证函数f(x)=在区间(1,+)上是减函数.7.()设函数f(x)的定义域关于原点对称且满足:(i)f(x1x2)=;(ii)存在正常数a使f(a)=1.求证:(1)f(x)是奇函数.(2)f(x)是周期函数,且有一个周期是4a.8.()已知函数f(x)的定义域为R,且对m、nR,恒有f(m+n)=f(m)+
8、f(n)1,且f()=0,当x>时,f(x)>0.(1)求证:f(x)是单调递增函数;(2)试举出具有这种性质的一个函数,并加以验证.参考答案难点磁场(1)解:依题意,对一切xR,有f(x)=f(x),即+aex.整理,得(a)(ex)=0.因此,有a=0,即a2=1,又a>0,a=1(2)证法一:设0x1x2,则f(x1)f(x2)=由x1>0,x2>0,x2>x1,>0,1e0,f(x1)f(x2)0,即f(x1)f(x2)f(x)在(0,+)上是增函数证法二:由f(x)=ex+ex,得f(x)=exex=ex·(e2x1).当x(0,+
9、)时,ex>0,e2x1>0.此时f(x)>0,所以f(x)在0,+)上是增函数.歼灭难点训练一、1.解析:f(x)= =f(x),故f(x)为奇函数.答案:C2.解析:f(x)=f(x),f(x)是奇函数,图象关于原点对称.答案:C二、3.解析:令t=|x+1|,则t在(,1上递减,又y=f(x)在R上单调递增,y=f(|x+1|)在(,1上递减.答案:(,14.解析:f(0)=f(x1)=f(x2)=0,f(0)=d=0.f(x)=ax(xx1)(xx2)=ax3a(x1+x2)x2+ax1x2x,b=a(x1+x2),又f(x)在x2,+单调递增,故a>0.又知0
10、x1x,得x1+x2>0,b=a(x1+x2)0.答案:(,0)三、5.证明:(1)设1x1x2+,则x2x1>0,>1且>0,>0,又x1+1>0,x2+1>0>0,于是f(x2)f(x1)=+ >0f(x)在(1,+)上为递增函数.(2)证法一:设存在x00(x01)满足f(x0)=0,则且由01得01,即x02与x00矛盾,故f(x)=0没有负数根.证法二:设存在x00(x01)使f(x0)=0,若1x00,则2,1,f(x0)1与f(x0)=0矛盾,若x01,则>0,>0,f(x0)>0与f(x0)=0矛盾,故方程f(x)=0没有负数根.6.证明:x0,f(x)=,设1x1x2+,则.f(x1)>f(x2),故函数f(x)在(1,+)上是减函数.(本题也可用求导方法解决)7.证明:(1)不妨令x=x1x2,则f(x)=f(x2x1)=f(x1x2)=f(x).f(x)是奇函数.(2)要证f(x+4a)=f(x),可先计算f(x+a),f(x+2a).f(x+a)=fx(a)=.f(x+4a)=f(x+2a)+2a=f(x),故f(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 风机安装施工合同模板
- 土地确权房屋租赁合同模板
- 房地产产品销售合同模板
- 会员代理兼职合同模板
- 阳光直存合同模板
- 车辆质押合同
- 汕尾商用电脑租赁合同模板
- 正式借贷合同模板
- 国企改革咨询服务合同模板
- 销售技能转让合同模板
- 人教版六年级上册数学期中测试卷及完整答案(各地真题)
- 危险性较大的分部分项工程清单(表格版)
- 植物病理学概论智慧树知到期末考试答案章节答案2024年浙江大学
- 陕煤集团笔试题库及答案
- 关于违规收受礼品礼金警示教育心得体会范文
- 人教版部编道德与法治四年级上册全册课件
- 无损检测公司质量手册范本
- 踝关节韧带损伤与修复ppt课件
- 沪科版八年级物理《光的折射》优质教案新课标[原创]
- Project培训教程(完整版)
- 建材市场管理公约
评论
0/150
提交评论