生用七年级数学下册期末复习提纲华东师大_第1页
生用七年级数学下册期末复习提纲华东师大_第2页
生用七年级数学下册期末复习提纲华东师大_第3页
生用七年级数学下册期末复习提纲华东师大_第4页
生用七年级数学下册期末复习提纲华东师大_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、七年级数学下期期末复习提纲第六章 一元一次方程一、基本概念(一)方程的变形法则法则1:方程两边都 或 同一个数或同一个,方程的解不变。例如:在方程 7-3x=4左右两边都减去 7,得到新方程:-3x+3=4-7。在方程6x=-2x-6左右两边都加上 4x,得到新 方程:8x=-6。移项:将方程中的某些项 改变符号 后,从方 程的一边移动到另一边,这样的变形叫做移项, 注意移项要变号。例如:(1)将方程x 5=7移项得:x = 7+5即 x = 12(2)将方程 4x = 3x 4移项彳导:4x -3x = - 4即 x = 4法则2:方程两边都除以或 同一个的数,方程的解不变。例如:(1)将方

2、程5x = 2两边都除以-5得:2x=5(2)将方程3 x =1两边都乘以 2得:x=-2339这里的变形通常称为“将未知数的系数化为1”。注意:(1)如遇未知数的系数为整数,“系数化为1”时,就要除以这个整数;如遇到未知数的系数 为分数,“系数化为1”时,就要乘以这个分数的 倒数。(2)不论上一乘以或除以数时,都要注意结 果的符号。方程的解的概念:能够使方程左右两边都相 等的未知数的值,叫做方程的 解。求不方程的解的过程,叫做解方程。(二)一元一次方程的概念及其解法1 .定义:只含有一个未知数,并且含有未知 数的式子都是 ,未知数的次数是 ,这样 的方程叫做一元一次方程。例如:方程 7-3x

3、=4、6x=-2x-6 都是一元一次 方程。2.1而这些万程 5x 3x+1 = 0、2x+y = l 3y、xy=5就不是一元一次方程。2. 一元一次方程的一般式为:ax+b=0 (其中a、b为常数,且aw 0)一元一次方程的一般式为:ax=b (其中a、b为常数,且aw。)3.解一元一次方程的一般步骤步骤:去分母,去括号,移项,合并同类项,未知数的系数化为 1。注意:(1)方程中有多重括号时,一般应按 先去小括号,再去中括号,最后去大括号的方法 去括号,每去一层括号合并同类项一次,以简便 运算。(2) “去分母”指去掉方程两边各项系数的 分母;去分母时,要求各分母的最小公倍数,去 掉分母后

4、,注意添括号。去分母时,不要忘记不 等式两边的每一项都乘以最小公倍数(即公分母)(三)一元一次方程的应用1 .纯数学上的应用:(1) 一元一次方程定 义的应用;(2)方程解的概念的应用;(3)代 数中的应用;(4)公式变形等。2 .实际生活上的应用: (1)调配问题;(2) 行程问题;(3)工程问题;(4)利息问题;(5) 面积问题等。3 .探索性应用:这类问题与上面的几类问题 有联系,但也有区别,有时是一种没有结论的问 题,需要你给出结论并解答。二、练习1.下列各式哪些是一元一次方程。,、X,、2X 3 X_+1=3x 4 (2)= x=o(4) 2x=0 3x- y=l 十 2yX2 .解

5、下列方程。-(x - 3) = 2 1 (x 3) 2254(、3)一一X4 5 2253 .解方程。(1)x 5x 11, 2x 4=1+ 3幺=吟+10.330.024 .解方程。(1)| 5X 2 | = 3(2)1 2x 1I =135.已知,| a 3 | +(b 十 1)2 =o代数式 在一a一m的值比1 b a十m多1,求 22m的值6 . m为何值时,关于X的方程4x 2m3x+1的解是x = 2x 3m的2倍。7 .为了准备小勇 6年后上大学的学费 5000 元,他的父母现在就参加了教育储蓄,下面有两 种储蓄方式。(1) 直接存一个6年期,年利率是;(2) 先存一个3年期的,

6、3年后将本利和 自动转存一个3年期。3年期的年利率是%。你认为哪种储蓄方式开始存人的本金比 较少?8.解答下列各问题:(1) 据北京日报5月16日报道:北京 市人均水资源占有 300立方米,仅是全国人均占11有量的,世界人均占有量的,问全国人均水832资源占有量是多少立方米 ?世界人均水资源占有 量是多少立方米?(2) 北京市一年漏掉的水相当于新建一 个自来水厂,据不完全统计,全市至少有6X1055个水龙头,2X10个抽水马桶漏水,如果一个关不 紧的水龙头,一个月能漏掉a立方米水,一个漏水马桶,一个月漏掉 b立方米水,那么一个月造 成的水流失量至少有多少立方米?(用含a、b的代数式表示)(3)

7、水源透支令人担忧,节约用水迫在眉睫, 针对居民用水浪费现象,北京市将制定居民用水 标准,规定三口之家楼房每月标准用水量,超标 部分加价收费,假设不超标部分每立方米水费元, 超标部分每立方米水费元,某住楼房的三口之家 某月用水12立方米,交水费 22元,请你通过列 方程求出北京市规定三口之家楼房每月标准用水 量是多少立方米?10 .爸爸为小明存了一个3年期的教育储蓄(3年期的年利率为% ), 3年后能取5405元,他 开始存入了多少元?11 . 一收割机收割一块麦田,上午收了麦田 的25%,下午收割了剩下麦田的20%,结果还剩6公顷麦田未收割,这块麦田一共有多少公顷?12 .儿子今年13岁,父亲

8、今年 40岁,父亲 的年龄可能是儿子年龄的4倍吗?第七章 二元一次方程组、基本概念(一)二元一次方程组的有关概念1.二元一次方程的定义:都含有 个未知 数,并且 的次数都是1,像这样的整式方程,叫做二元一次方程。一般形式为:ax+by=c (a、b、c为常数,且 a、b均不为0)结合一元一次方程,二元一次方程对“元”和“次”作进一步的理解;“元”与“未知数” 相通,几个元是指几个未知数,“次”指未知数 的最高次数。例如:方程 7y-3x=4、-3a+3=4-7b、2m+3n=。1-s+t=2s等都是二元一次方程。而 6x2=-2y-6、4x+8y=-6z、 =n 等都不是m元一次方程。2.二元

9、一次方程组的定义:把两个二元一次方程合在一起,就组成了一个二元一次方程组。例如:2x 3y7a 3b 3a 2b 1等都是二元一次方3s11程组2x 3y 57a 3a3而、x z8 a 2a 11一 nm m n2等都不是二元一次方程组。1注意:(1)只要两个方程一共含有两个未知数,也是二元一次方程组。如:2x 5y 8s 2也是二元一次方程组。t 113.二元一次方程和二元一次方程组的解(1)二元一次方程的解:能够使二元一次方 程的左右两边都相等的 两个未知数的值,叫做二 元一次方程的解。(2)二元一次方程组的解:使二元一次方程 组的两个方程左右两边的值都相等的 两个未知数 的值,叫做二元

10、一次方程组的解。(即是两个方 程的公共解)注意:写二元一次方程或二元一次方程组的解时要用“联立”符号""把方程中两个未知数的值连接起来写。- x a二元方程解的写法的标准形式是:y b(其中a、b为常数)(二)二元一次方程组的解法1 .解二元一次方程组的基本思想:“消元”化二元一次方程组为一元一次方程来解。2 .二元一次方程组的基本解法(1)代入消元法(代入法)定义:通过“代人”消去一个未知数,将方 程组转化为一元一次方程来解的这种解法叫做代 人消元法,简称代入法。步骤:选取一个方程,将它写成用一个未 知数表示另一个未知数,记作方程。把代人另一个方程,得一元 一次方程。解这

11、个一元一次方程,得一个 未知数的值。把这个未知数的值代人,求 出另一个未知数值,从而得到方程组的解。(2)加减消元法(加减法)定义:通过将两个方程相加 (或相减),消去 一个未知数,将方程组转化为一元一次方程来解,这种解法叫加减消元法,简称加减法步骤:把两个方程同一个未知数的系数乘 以适当的倍数,使得这两个未知数的绝对值相同。把未知数的绝对值相同的两个 方程相加或相减,得一元一次方程。解这个一元一次方程,得一个 未知数的值。把这个未知数的值代人原方程 组中系数叫简单的一个方程,求出另一个未知数 值,从而得到方程组的解。注意:正确选用两种基本解二元一次方程组(1)若二元一次方程组中有一个未知数系

12、数 的绝对值为1,适宜用“代入法”。(2)用加减法解二元一次方程组,两方程中 若有一个未知数系数的绝对值相等,可直接加减 消元;若同一未知数的系数绝对值不等,则应选 一个或两个方程变形,使一个未知数的系数的绝 对值相等,然后再直接用加减法求解;若方程组 比较复杂,应先化简整理。(三)二元一次方程组的应用1 .纯数学上的应用:(1)二元一次方程定 义的应用;(2)方程解的概念的应用;(3)代 数中的应用;(4)公式变形等。2 .实际生活上的应用: (1)调配问题;(2) 行程问题;(3)工程问题;(4)利息问题;(5) 面积问题等。3 .探索性应用:这类问题与上面的几类问题 有联系,但也有区别,

13、有时是一种没有结论的问 题,需要你给出结论并解答。注意事项:(1) 在实际问题中,常会遇到有多个未知 量的问题,和一元一次方程一样,二元一次方程 组也是反映现实世界数量之间相等关系的数学模 型之一,要学会将实际问题转化为二元一次方程 组,从而解决一些简单的实际问题。(2) 二元一次方程组的解法很多,但它的 基本思想都是通过消元,转化为一元一次方程来解的,最常见的消元方法有代人法和加减法。一 个方程组用什么方程来逐步消元,转化应根据它 的特点灵活选定。(3) 通过列方程组来解某些实际问题,应注意检验和正确作答,检验不仅要检查求得的解 是否适合方程组的每一个方程,更重要的是要考 察所得的解答是否符

14、合实际问题的要求。二、练习1 .求二元一次方程 3x+y = 10的正整数解。2,已知 x=1 2xn m=51=2是方湛I mx ny=5的解,求m和n的值。、B两地相距150千米,甲、乙两车分别从 A、 月两地同时出发,同向而行,甲车 3小时可追上 乙车;相向而行,两车小时相遇,求甲、乙两车 的速度。4 . 一个三位数,各数位上的数字之和为13,十位上的数字比个位上的数字大2,如果把百位上的数字与个位上的数字对调,那么所得新数比原 来的三位数大 99,求这个三位数。5 .某旅行团从甲地到乙地游览。甲、乙两地 相距100公里,团中的一部分人乘车先行,余下 的人步行,先坐车的人到途中某处下车步

15、行,汽 车返回接先步行的那部分人,已知步行时速是8公里,汽车时速是40公里,问要使大家在下午 4:00 同时到达乙地,必须在什么时候出发?例2:方程科 ax+by=62的解应可x = 8 LLmx-20y=-224y=10但是由于看错了系数m而得到的解为x 1,求a+b+m的值;y 1第8章一元一次不等式一、基本概念(一)不等式的有关概念和性质1 .不等式的定义:用 表示不等 关系的式子叫做不等式。常见不等号:>、<、>、<、*。注:“ >"、“ <”不仅表示左右两边不等关系,还明确表示左右两边的大小;“<”、也表示不等,前者表示“不大于”(

16、小于或等于),后者表示“不小于”(大于或等于),_ 表示左右两边不相等例如:方程 7y-3x >4、-3a+3<4-7a、2m+3n w 0等都是不等式。而-2y-6、4x+8y=-6z等都不是不等式。2 .不等式解的定义:能使不等式成立的未知 数的值,叫做不等式的解。例如:不等式 120<5x中x=25, 26, 27, 等都是120<5x的解,而x = 24, 23, 22, 21则都 不是不等式的解。3 .不等式的解集(1)定义:一个不等式的 所有解,组成这个 不等式解的集合,简称为这个不等式的解集。(2)求不等式的解集的过程,叫做解不等式。(3)在数轴上表示不等

17、式的解集:没有等号画空心圆圈,有等号画实心圆点。“大于”向右画,“小于”向左画。4.不等式的基本性质不等式的基本性 1:不等式的两边都加上(或 减去)同一个数(或式子),不等号的方向 O即:如果 a>b,那么 a+c>b+c, a-c >b-c ; 如果 a<b,那么 a+c<b+c, a-c < b-c.不等式的基本性 2:不等式的两边都乘以(或 除以)同一个 ,不等号的方向不变。即:如果 a<b, c>0,那么 ac<bc, a/c < b/c不等式的基本性 3:不等式的两边都乘以(或 除以)同一个负数,不等号的 o即:如果 a&

18、gt;b, c<0,那么 ac<bc, a/c < b/c(二)解一元一次不等式1 . 一元一次不等式的定义:只含有一个未知数,且含未知数的式子是整式,未知数的次数是 1, 像这样的不等式叫做一元一次不等式。例如:方程 7-3x >4、6x < -2x-6、3x/-2x+150都是一元一次不等式。2.1而这些万程 5x -3x+1 >0>2x+y <l 3丫、在w 5就不是一元一次不等式。2. 一元一次不等式的解法解一元一次不等式的一般步骤步骤:去分母,去括号,移项,合并同类项,未知数的系数化为 1。注意:(1)不等式中有多重括号时,一般应 按先

19、去小括号,再去中括号,最后去大括号的方 法去括号,每去一层括号合并同类项一次,以简 便运算。(2) “去分母”指去掉不等式两边各项系数的分母;去分母时,要求各分母的最小公倍数, 去掉分母后,注意添括号。去分母时,不要忘记 不等式两边的每一项都乘以最小公倍数(即公分 母)。不等式的解法与解一元一次方程类似,完全 可以把解一元一次方程的思想照搬过来。(三)一元一次不等式组1. . 一元一次不等式组的定义: 几个一元一次 不等式合起来就组成一元一次不等式组与二元一次方程组不同的是,这里的 “几个” 可以两个,也可以三个,或更多个。2. 一元一次不等式组的解集:不等式组中几个不等式的解集的公共部分,叫

20、做这个不等式组 的解集。3. 一元一次不等式组的解集的确定规律:同“大”取大,同“小”取小,“大”小“小”大中间找,“大”大“小”小无解了4. 一元一次不等式组的解法:求不等式组的解集的过程,叫做解不等式组。一般步骤:(1)分别解不等式组中的每个不等式;(2)把每个不等式组的解集在数轴上表示出来;(3)找出各个不等式解集的公共部分;(4)再结合不等式组解集的确定规律,写出 不等式组的解集。(四)一元一次不等式(组)的应用1 .纯数学上的应用:(1) 一元一次不等式 定义的应用;(2)不等式解集的概念的应用;(3)代数中的应用;2 .实际生活上的应用: (1)调配问题;(2) 行程问题;(3)工

21、程问题;(4)利息问题;(5) 决策问题等。3 .探索性应用:这类问题与上面的几类问题 有联系,但也有区别,有时是一种没有结论的问 题,需要你给出结论并解答。二、练习(一)选择题:4 、若 a>b 贝I ()A、a-2<b-2B 、2a<2b八abC、一一D 、a+5>b+5222、不等式1x>3的解集是()2A、x> - 6 B > x> C、2x< 3 D 、x< 62A4A 、x B34 2x>54x D!-x>x 43 I 35、不等组A、一 4 B3、 4 D 、 4A、一 x<0的解集是 x<0 B

22、 、x .3-2的解集是x< -32C、3x< 5的解集是x> - D 、3x一 0的解集是x>054、若代数式3x+4的值不大于0,则x的取值范围是()4x C 、3的整数解是()2、 3、 4 C 、6、如果不等式(a-1) x> (a-1)的解集是x<1 ,那么a的取值范围是()A 、a<1B 、a>1C、 a<1 D 、 a<0(二)填空题:1、用不等表示:x的3倍大于52、不等式2x - 1>0的解集是; 不等式一2x<10的解集是。3、x 1<2的正整数解是4、在2(x+2)<2的两边都除以 时,

23、x+1> 1的依据是 不等卜质 3。5、由x<y得到,ax>ay, a应满足的条件(三)解答题3、下列结论中,正确的是(5x 1>8x+3.1、解不等式并把它的解集在数轴上表示出来2、已知y=53x 试求:当x取何值时,y >o。x 1 x 4_3、解不等式x 4232| 5+4<3 (h+L) i|+JT+1 2jf- 14、亍 k 5、< st SXl+Jx -臼 WO+J(五)应用题1、如果关于x的不等式_k _x 6 0正整 数解为1,2,3,正整数k应取怎样的值?2、某旅游团有48人到某宾馆住宿,若全安排 住宾馆的底层,每间住4人,房间不够;

24、每间住5人, 有一个房间没有住满5人.问该宾馆底层有客房多少间?第九章多边形一、基本概念(一)三角形有关概念1 .三角形定义:三角形是由三条不在同一条 直线上的线段首尾顺次连结组成的平面图形,这 三条线段就是三角形的边。三角形专用符号:组成三角形的线段如图中的AR BG AC是这个三角形的三边,两边的公共点叫三角形的 顶点。(如点A等) 三角形顶点只能用大写字母表示,整个三角形表示为 ABC3 .三角形的内角,外角的概念:(1)内角:每两条边所组成的角 叫做三角形的内角,如/ BAC等。每 个三角形有三个内角,(2)外角:三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角,相邻的

25、外角有几个?它们之间有什么关系?一个三角形共有几个外角?4 .三角形的分类(1)三角形按角分类可分为:锐角三角形(三个角都 是锐角)直角三角形(有一个角 是直角)钝角三角形(有一个角 是钝角)各类三角形的定义锐角三角形:所有内角都是锐角的三角形叫锐角三角形;直角三角形:有一个内角是直角的三角形叫直角三角形;.一一,2 1钝角三角形:有一个内角是钝角的三角形叫 钝角三角形。.(2)三角花按边分类可分为:各类三角形杷定义不等边三角It三边互不相等的三角形叫做入 - 的不等边三角形;等腰三角形顶有两条边相等的三角形叫等腰*,乙,I 乙,一,三角形。相等的两边叫做等腰三角形的腰。等边三角形;三条边都相

26、等的三角形叫等边三角形(或正三枷)O5 .三角形的中线、角平分线、高(记住这重 要的三线)三角形的中线:三角形的 一个顶点与它的对 边中点的连线叫三角形的中线。三角形的角平分线:三角形 内角的平分线 与 对边的交点和这个内角顶点之间的线段叫三角形 的角平分线。三角形的高:过三角形顶点作对边的垂线, 垂足与顶点间的线段 叫三角形的高。注意:(1) 一个三角形中三条中线(高、角平分线)之 间的位置关系怎样?三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点(2) 一个三角形的三条中线(角平分线)的交点与三角形有怎样的位置关系?三条中线(角平分线)相交于一点,这一点在 三角形内部(3)

27、直角三角形的三条高,它们有怎样的位置 关系?钝角三角形呢?直角三角形有一条高在三角形内部,另外两 条就是直角三角形的两条直角边,三条高的交点 就是直角三角形的直角顶点,钝角三角形有一条 高在形内,两条高在形外,三条高所在的直线的 交点在形外。(4)以上三线都是线段。(二)三角形外角的性质以及其外角的和1 .三角形外角的性质:(1)三角形的一个外角等于和它不相邻的两 个内角的和;(2)三角形的一个外角大于任何一个和它不 相邻的内角。2 .三角形外角的和。三角形的外角与和它相邻内角有什么关系?(互补)(1)三角形外角和的定义:与三角形的每个内角相邻的外角分别有两个,这两个外角是对顶 角,从与每个内

28、角相等的两个外角中分别取一个 相加,得到的和称为三角形的外角和。(2)三角形外角和定理:三角形的外角和是360°(三)三角形的三边关系1 .三角形三边不等关系定理:三角形的任何两边的和大于第三边。三角形的任何两边的差小于第三边。即三角形第三边的取值范围是:|任何两边的差|(第三边(任何两边的和以上定理主要用语判断给出一定长度的线段 能否构成三角形和求第三边的取值范围。2 .三角形具有稳定性这就是说三角形的三条边固定,那么三角形的形状和大小就完全确定了。三角形的这个性质 叫做三角形的稳定性。四边形就不具有这个性质。(四)多边形的内角和与外角和1 .多边形及其相关概念定义:由n条不在同一

29、直线上的线段首 尾顺次连结组成的平面图形,记为n边形,又称多边形。一个n边形有n个内角,有2n个外角。如果多边形的 各边都相等,各内角也都相等 则称为正多边形,如正三角形、正四边形(正方形)、正五边形等等。对角线:连结多边形不相邻的两个顶点的线 段叫做多边形的对角线。从n边形的一个顶点引对角线,可以引(n-3) 条,这(n-3)条对角线把n边形分成(n-2)个三 角形。从n边形的所有顶点引对角线的总条数为:n() 条。2 .多边形的内角和公式2n边形的内角和=(n-2) 180°3 .多边形的外角和。(1)多边形的外角和定义:从与每个内角相 邻的两个外角中分别 取一个相加,得到的和称

30、为 多边形的外角和。(2)多边形的外角和定理:多边形的外角和 等于360° o多边形的外角和与多边形的边数无关。(五)用正多边形拼地板1 .用相同的正多边形拼地板:能拼成既 不留 空隙,又不重叠的平面图形的 关键是围绕一点拼 在一起的几个多边形的内角相加恰好等于 360°。在正三角形、正方形、正五边形、正六边形、正八边形中能够拼出完整地面是 这就是说,当(360。+(n - 2) .何)为 n正整数时rr 2n ,,E 即f为正整数时,用这样的正n边形就可n-2以铺满地面。设正多边形的个数为 n,每个内角为a ,则要 铺满地面,它们满足下列关系:an=360。2 .用多种正

31、多边形拼地板铺垫满地面的标志:满足围绕一点的这几个正多边形的一个内角的和等于360 °设正多边形甲的个数为n,每个内角为a ,正多边形乙的个数为 mi每个内角为3 ,则它们满足 下列关系:a n+ 3 m=360°二、练习1 .下列各组中的数分别表示三条线段的长 度,试判断以这些线段为边是否能组成三角形。(1)3, 5, 2(2)a, b, a+b(a>0 , b>0)(3)3, 4, 5(4)m+1, 2m, m+l(m>0)(5)a+1 , 2, a+5(a>0)2 .如图,/ BAG= 90° , / 1 = / 2, AMIL BC

32、, AD)± BE,那么/ 2 = / 3 = / 4,你知道这是为什么?3 .如图(2) , DC平分 ABC的外角,与 BA的 延长线于 D,那么/ BAO / B,为彳f么?4 .在下列四组线段中,可以组成三角形的是()1, 2, 34, 5, 61, 1 , 12315, 72, 90A . 1 组 B . 2 组 C 3 组 D.4 组5.下列四种说法正确的个数是 () 个A. 18. 2 C . 3 D . 4一个三角形的三个内角中至多有一个钝 角一个三角形的三个内角中至少有2个锐角 一个三角形的三个内角中至少有一个直角 一个三角形的三个外角中至少有两个钝角6 . ABC

33、中,三边长为 6、7、x,则x 的取值范围是()A . 2<x<12 B . 1<x<13 C. 6<x<7 D ,无 法确定7 .等腰三角形两边长分别是5和7,则该三角形周长为()A . 17 B . 19 C17 或 19 D ,无法 确定8 . ABC的三边a、b、c都是正整数,且满 足0<a<b<c,如果b=4,问这样的三 角形有多少个?9 .如图(1)依图填空:10 )在 ABC中,BC边上的高是()11 )在AAEC中,AE边上的高是()12 )在AFEC中,EC边上的高是()13 ) AB= CD= 2cm, AE= 3cm

34、,则4 AEC的面 积 S=(), CE=()10 .如图(2),在 ABC中,D是BC上一点, /1 = /2, /3=/4, / BAC= 63° ,求/ DAC的 数。11 .如图(3),在 ABC中,/ ABC与/ ACB的 一。1 平分线相交于 0,那么/ BDC= 90 + 2 /A,你会 说明这个结论正确?12 .已知多边形的一个内角的外角与其它各 内角和为600° ,求边数及相应的外角的度数。第十章轴对称一、基本概念(一)轴对称图形的有关概念1 .轴对称图形定义:把 一个图形 沿着某条直 线对折,对折的两部分是完全重合的,这样的图 形称为轴对称图形,这条直线

35、叫做这个图形的对 称轴。常见的基本轴对称图形:线段、直线、角、 等腰三角形、正三角形、长方形、正方形、等腰 梯形、菱形、圆等。注意:轴对称图形是一个图形所具有的特性 , 不是“两个”图形的位置。2 .轴对称(即关于某条直线成轴对称)的定 义:把一个图形沿着某一条直线翻折过去,如果 它能够与另一个图形 重合,那么就说这 两个图形 成轴对称,这条直线就是它们的 对称轴,两个图 形中的对应点(即两图形重合时互相重合的点 )叫 做对称点。注意:轴对称是两个图形的空间位置,不是 “一个”图形的特性。3 .轴对称(或关于某条直线成对称的两个图 形)的性质:(1)轴对称图形(或关于某条直线成对称的 两个图形

36、)沿对称轴对折后的两部分完全重合,所 以它的对应线段(对折后重合的线段)相等,对应 角(对折后重合的角)相等。(2)关于某直线成轴对称的两个图形的大小 和形状完全相同。(3)对称轴垂直平分对称点的连线。4 .轴对称图形与两个图形成轴对称的区别与 联系:如图(1),如果沿着虚线对折,直线两旁的部 分会完全重合,那么这个图形就是轴对称图形。如图(2),如果沿着虚线折叠,右边的图形会 与左边的图形完全重合,那么就说这两个图形关 于虚线这条直线成轴对称。5 .如何画图形的对称轴?(1)画轴对称图形的对称轴任意找一对对称点,连接这对对称点,画出 所连线段的垂直平分线。这条垂直平分线就是该 轴对称图形的对称轴。(2)画成轴对称两个图形的对称轴:任意找一对对称点,连接这对对称点,画出 所连线段的垂直平分线。这条垂直平分线就是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论