版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、考点一 离散型随机变量及其分布列1(2013新课标全国,12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为,且各件产品是否为优质品相互独立(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分
2、布列及数学期望解:本题主要考查独立重复试验和互斥事件的概率、条件概率、离散型随机变量的分布列和数学期望等,意在考查考生的阅读理解能力及运用所学概率知识解决实际问题的能力(1)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品都是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A(A1B1)(A2B2),且A1B1与A2B2互斥,所以P(A)P(A1B1)P(A2B2)P(A1)P(B1|A1)P(A2)P(B2|A2)××.(2)X可能的取值为400,500,800,并
3、且P(X400)1,P(X500),P(X800).所以X的分布列为X400500800PEX400×500×800×506.25.2(2013山东,12分)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是.假设各局比赛结果互相独立(1)分别求甲队以30,31,32胜利的概率;(2)若比赛结果为30或31,则胜利方得3分、对方得0分;若比赛结果为32,则胜利方得2分、对方得1分求乙队得分X的分布列及数学期望解:本题考查相互独立事件的概率、二项分布、离散型随机变量的概率分布与数学期望等基础
4、知识,考查分类与整合思想,考查运算求解能力,考查分析问题和解决问题的能力(1)记“甲队以30胜利”为事件A1,“甲队以31胜利”为事件A2,“甲队以32胜利”为事件A3,由题意知,各局比赛结果相互独立,故P(A1)3,P(A2)C2×,P(A3)C22×.所以,甲队以30胜利、以31胜利的概率都为,以32胜利的概率为.(2)设“乙队以32胜利”为事件A4,由题意知,各局比赛结果相互独立,所以P(A4)C22×.由题意知,随机变量X的所有可能的取值为0,1,2,3,根据事件的互斥性得P(X0)P(A1A2)P(A1)P(A2),又P(X1)P(A3),P(X2)P(
5、A4),P(X3)1P(X0)P(X1)P(X2),故X的分布列为X0123P所以EX0×1×2×3×.3(2013湖南,12分)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(2)从所种作物中随机选取一株,求它的年收获量
6、的分布列与数学期望解:本小题主要考查古典概型、离散型随机变量的分布列与数学期望的求解,考查考生的阅读理解能力、收集数据的能力、运算求解能力和创新意识(1)所种作物总株数N1234515,其中三角形地块内部的作物株数为3,边界上的作物株数为12.从三角形地块的内部和边界上分别随机选取一株的不同结果有CC36种,选取的两株作物恰好“相近”的不同结果有3328种故从三角形地块的内部和边界上分别随机选取一株作物,它们恰好“相近”的概率为.(2)先求从所种作物中随机选取的一株作物的年收获量Y的分布列因为P(Y51)P(X1),P(Y48)P(X2),P(Y45)P(X3),P(Y42)P(X4),所以只
7、需求出P(Xk)(k1,2,3,4)即可记nk为其“相近”作物恰有k株的作物株数(k1,2,3,4),则n12,n24,n36,n43. 由P(Xk),得P(X1),P(X2),P(X3),P(X4).故所求的分布列为Y51484542P所求的数学期望为E(Y)51×48×45×42×46.解析:P(X0)(1p)2×,p,随机变量X的可能值为0,1,2,3,因此P(X0),P(X1)×()2×()2,P(X2)×()2×2×()2,P(X3)×()2,因此E(X)1×2
8、215;3×.答案:4(2012山东,12分)现有甲、乙两个靶某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分该射手每次射击的结果相互独立假设该射手完成以上三次射击(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X的分布列及数学期望EX.解:(1)记:“该射手恰好命中一次”为事件A,“该射手射击甲靶命中”为事件B,“该射手第一次射击乙靶命中”为事件C,“该射手第二次射击乙靶命中”为事件D,由题意知P(B),P(C)P(D),由于AB CD,根据事件的独立性和互斥性得P(A)P(BCD)P(B)P
9、(C)P(D)P(B)P()P()P()P(C)P()P()P()P(D)×(1)×(1)(1)××(1)(1)×(1)×.(2)根据题意,X的所有可能取值为0,1,2,3,4,5.根据事件的独立性和互斥性得P(X0)P( )1P(B)1P(C)1P(D)(1)×(1)×(1).P(X1)P(B)P(B)P()P()×(1)×(1).P(X2)P(CD)P(C)P(D)(1)××(1)(1)×(1)×,P(X3)P(BCBD)P(BC)P(BD)×
10、;×(1)×(1)×,P(X4)P(CD)(1)××,P(X5)P(BCD)××.故X的分布列为X012345P所以EX0×1×2×3×4×5×.5(2012江苏,10分)设为随机变量从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,1.(1)求概率P(0);(2)求的分布列,并求其数学期望E()解:(1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,所以共有8C对相交棱,
11、因此P(0).(2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对,故P(),于是P(1)1P(0)P()1,所以随机变量的分布列是01P()因此E()1××.6(2011新课标全国,12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表指标值分组90,94)94,98)98,102)102,106)106,110频数82042228B配方的频数分布表指标值分组90,9
12、4)94,98)98,102)102,106)106,110频数412423210(1)分别估计用A配方,B配方生产的产品的优质品率;(2)已知用B配方生产的一件产品的利润y(单位:元)与其质量指标值t的关系式为y从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)解:(1)由试验结果知,用A配方生产的产品中优质品的频率为0.3,所以用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为0.42,所以用B配方生产的产品的优质品率的估计值为0.42.
13、(2)用B配方生产的100件产品中,其质量指标值落入区间90,94),94,102),102,110的频率分别为0.04,0.54,0.42,因此P(X2)0.04,P(X2)0.54,P(X4)0.42,即X的分布列为X224P0.040.540.42X的数学期望EX2×0.042×0.544×0.422.68.7(2010山东,12分)某学校举行知识竞赛,第一轮选拔共设有A、B、C、D四个问题,规则如下:(1)每位参加者计分器的初始分均为10分,答对问题A、B、C、D分别加1分、2分、3分、6分,答错任一题减2分;(2)每回答一题,计分器显示累计分数,当累计分
14、数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;(3)每位参加者按问题A、B、C、D顺序作答,直至答题结束假设甲同学对问题A、B、C、D回答正确的概率依次为,且各题回答正确与否相互之间没有影响求甲同学能进入下一轮的概率;用表示甲同学本轮答题结束时答题的个数,求的分布列和数学期望E.解:设A,B,C,D分别为第一、二、三、四个问题用Mi(i1,2,3,4)表示甲同学第i个问题回答正确,用Ni(i1,2,3,4)表示甲同学第i个问题回答错误则Mi与Ni是对立事件(i1,2,3,4),由题意得P(M1),P
15、(M2),P(M3),P(M4),所以P(N1),P(N2),P(N3),P(N4).(1)记“甲同学能进入下一轮”为事件Q,则QM1M2M3N1M2M3M4M1N2M3M1M2N3M4N1M2N3M4,由于每题的答题结果相互独立,因此P(Q)P(M1M2M3N1M2M3M4M1N2M3M4M1M2N3M4N1M2N3M4)P(M1M2M3)P(N1M2M3M4)P(M1N2M3M4)P(M1M2N3M4)P(N1M2N3M4)P(M1)P(M2)P(M3)P(N1)P(M2)P(M3)P(M4)P(M1)P(N2)P(M3)P(M4)P(M1)P(M2)P(N3)P(M4)P(N1)P(M2
16、)P(N3)P(M4)××××××××××××××.(2)由题意,随机变量的可能取值为:2,3,4.由于每题答题结果相互独立,所以P(2)P(N1N2)P(N1)P(N2),P(3)P(M1M2M3)P(M1N2N3)P(M1)P(M2)P(M3)P(M1)P(N2)P(N3)××××.P(4)1P(2)P(3)1.因此随机变量的分布列为234P所以E2×3×4×.考点二 二项分布及其应
17、用1(2013安徽,13分)某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数)假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到记该系收到李老师或张老师所发活动通知信息的学生人数为X.(1)求该系学生甲收到李老师或张老师所发活动通知信息的概率;(2)求使P(Xm)取得最大值的整数m.解:本题主要考查古典概型,计数原理,分类讨论思想等基础知识和基本技能,考查抽象的思想,逻辑推理能力,运算求解能力,以及运用数学知识分析和解决实际问题的能力(1)因为
18、事件A:“学生甲收到李老师所发信息”与事件B:“学生甲收到张老师所发信息”是相互独立的事件,所以与相互独立由于P(A)P(B),故P()P()1,因此学生甲收到活动通知信息的概率P12.(2)当kn时,m只能取n,有P(Xm)P(Xn)1.当k<n时,整数m满足kmt,其中t是2k和n中的较小者由于“李老师和张老师各自独立、随机地发活动通知信息给k位同学”所包含的基本事件总数为(C)2.当Xm时,同时收到李老师和张老师转发信息的学生人数恰为2km,仅收到李老师或仅收到张老师转发信息的学生人数均为mk.由乘法计数原理知:事件Xm所含基本事件数为CCCCCC.此时P(Xm).当km<t
19、时,P(Xm)P(Xm1)CCCC(mk1)2(nm)(2km)m2k.假如k2k<t成立,则当(k1)2能被n2整除时,k2k<2k1t.故P(Xm)在m2k和m2k1处达最大值;当(k1)2不能被n2整除时,P(Xm)在m2k处达最大值(注:x表示不超过x的最大整数)下面证明k2k<t.因为1k<n,所以2kk0.而2kn<0,故2k<n,显然2k<2k.因此k2k<t.2(2013福建,13分)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以获得3分;未中奖则不得分每人有
20、且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?解:本小题主要考查古典概型、离散型随机变量的分布列、数学期望等基础知识,考查数据处理能力、运算求解能力、应用意识,考查必然与或然思想法一:(1)由已知得,小明中奖的概率为,小红中奖的概率为,且两人中奖与否互不影响记“这两人的累计得分X3”的事件为A,则事件A的对立事件为“X5”,因为P(X5)×,所以P(A)1P(X5),即这
21、两人的累计得分X3的概率为.(2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1),选择方案乙抽奖累计得分的数学期望为E(3X2)由已知可得,X1B,X2B,所以E(X1)2×,E(X2)2×,从而E(2X1)2E(X1),E(3X2)3E(X2).因为E(2X1)>E(3X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大法二:(1)由已知得,小明中奖的概率为,小红中奖的概率为,且两人中奖与否互不影响记“这两人的累计得分X3”的事件为A,则事件A包含有“X0”,“X2”,“X
22、3”三个两两互斥的事件,因为P(X0)×,P(X2)×,P(X3)×,所以P(A)P(X0)P(X2)P(X3),即这两人的累计得分X3的概率为.(2)设小明、小红都选择方案甲所获得的累计得分为X1,都选择方案乙所获得的累计得分为X2,则X1,X2的分布列如下:X1024PX2036P所以E(X1)0×2×4×,E(X2)0×3×6×.因为E(X1)>E(X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大3(2013四川,12分)某算法的程序框图如图所示,其中输入的变量x在1,2,3,2
23、4这24个整数中等可能随机产生(1)分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i1,2,3);(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i1,2,3)的频数以下是甲、乙所作频数统计表的部分数据甲的频数统计表(部分)运行次数n输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数30146102 1001 027376697乙的频数统计表(部分)运行次数n输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数30121172 1001 051696353当n2 100时,根据表中的数据,分别写出甲、乙所编程序各自
24、输出y的值为i(i1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大;(3)将按程序框图正确编写的程序运行3次,求输出y的值为2的次数的分布列及数学期望解:本题主要考查算法与程序框图、古典概型、独立重复试验、随机变量的分布列、数学期望、频数、频率等概念及相关计算,考查运用统计与概率的知识解决实际问题的能力,考查数据处理能力、应用意识和创新意识(1)变量x是在1,2,3,24这24个整数中随机产生的一个数,共有24种可能当x从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y的值为1,故P1;当x从2,4,8,10,14,
25、16,20,22这8个数中产生时,输出y的值为2,故P2;当x从6,12,18,24这4个数中产生时,输出y的值为3,故P3.所以,输出y的值为1的概率为,输出y的值为2的概率为,输出y的值为3的概率为.(2)当n2 100时,甲、乙所编程序各自输出y的值为i(i1,2,3)的频率如下:输出y的值为1的频率输出y的值为2的频率输出y的值为3的频率甲乙比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性较大(3)随机变量可能的取值为0,1,2,3.P(0)C×0×3,P(1)C×1×2,P(2)C×2×1,P(3)C×3
26、×0,故的分布列为0123P所以,E0×1×2×3×1.即的数学期望为1.4(2010新课标全国,5分)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A100 B200C300 D400解析:记“不发芽的种子数为”,则B(1 000,0.1),所以E1 000×0.1100,而X2,故EXE(2)2E200.答案:B5(2010安徽,5分)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球先从甲罐中随机取出一球放入乙罐,分别
27、以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件则下列结论中正确的是_(写出所有正确结论的编号)P(B);P(B|A1);事件B与事件A1相互独立;A1,A2,A3是两两互斥的事件;P(B)的值不能确定,因为它与A1,A2,A3中究竟哪一个发生有关解析:由题意知P(B)的值是由A1,A2,A3中某一个事件发生所决定的,故错误;P(B|A1),故正确;由互斥事件的定义知正确,故正确的结论的编号是.答案:6(2012辽宁,12分)电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查下面是根据
28、调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女1055合计(2)将上述调查所得到的频率视为概率现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X)附:2,P(2k)0.050.01k3.8416.635解:(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而2&
29、#215;2列联表如下:非体育迷体育迷合计男301545女451055合计7525100将2×2列联表中的数据代入公式计算,得23.030.因为3.030<3.841,所以没有理由认为“体育迷”与性别有关(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率为.由题意XB(3,),从而X的分布列为X0123PE(X)np3×,7(2011天津,13分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同每次游戏从两个箱子里各随机摸出2个球,若摸出的白球
30、不少于2个,则获奖(每次游戏结束后将球放回原箱)(1)求在1次游戏中,()摸出3个白球的概率;()获奖的概率;(2)求在2次游戏中获奖次数X的分布列及数学期望E(X)解:(1)()设“在1次游戏中摸出i个白球”为事件Ai(i0,1,2,3),则P(A3)·.()设“在1次游戏中获奖”为事件B,则BA2A3.又P(A2)··,且A2,A3互斥,所以P(B)P(A2)P(A3).(2)由题意可知X的所有可能取值为0,1,2.P(X0)(1)2,P(X1)C×(1),P(X2)()2.所以X的分布列是X012PX的数学期望E(X)0×1×2×.8(2010广东,12分)某食品厂为了检查一条自动包装流水线的生产情况,随机
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年工程人员培训合同3篇
- 2024版市场营销与策划合同2篇
- 二零二四年影视制作合作分成合同3篇
- 2024席草买卖合同范本
- 2024委托招商代理合同书模板
- 重点行业2024年度大数据分析服务合同
- 房屋租赁转让合同
- 2024店招广告合同范本
- 2024房产销售置业顾问劳动合同
- 2024年度城市综合体开发合同:断桥铝合金门窗集群供应3篇
- 古典时期钢琴演奏传统智慧树知到答案章节测试2023年星海音乐学院
- 万羽蛋鸡项目简介
- LY/T 1953-2011自然保护区设施标识规范
- 国际市场营销PPT
- 人教部编版九年级语文上册第六单元习作《学习改写》教学设计
- 基因治疗课件最新版
- 2023年苏州太仓临港投资发展集团有限公司招聘笔试模拟试题及答案解析
- 《反对邪教崇尚科学》主题班会
- 第二届全国人工智能应用技术技能大赛理论知识竞赛题库
- 苏教版高一数学必修1全套精美课件
- 《坚持国家利益至上》课件-
评论
0/150
提交评论