古典控制考点(可打印版)_第1页
古典控制考点(可打印版)_第2页
古典控制考点(可打印版)_第3页
古典控制考点(可打印版)_第4页
古典控制考点(可打印版)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 843 古典控制考点(必考点+次考点+低频考点)第一等级考点(32个)1.结构图等效变换 串联,并联,反馈,前馈,求解两点间传递函数2.梅森增益公式回路,接触回路,不接触回路,特征式,前向通道,余子式,求解两点间传递函数3.二阶系统的数学模型 4.欠阻尼二阶系统单位阶跃响应及7指标5.线性系统稳定的充要条件 闭环系统特征方程的所有根均具有负实部;或者,闭环传递函数的极点均位于S左半平面。6.劳斯判据特殊情况:i. 劳斯表中某行的第一列项为零,但非全零行。ii. 劳斯表中出现全零行,辅助方程法。7.两种定义误差的方法8.误差传递函数与误差求解9.典型输入信号下静态误差系数及稳态误差10.根轨迹

2、方程 11.相角条件与模值条件12.绘制180度根轨迹起点,终点;分支数,对称性,连续性;渐近线;实轴分布;分离点,会合点,重根点;分离角,会和角;起始角,终止角;根与系数的关系13.绘制广义根轨迹a) 绘制0度根轨迹 b) 绘制参量根轨迹14.频率特性定义15.奈奎斯特图,伯德图定义16.13种典型环节及其奈奎斯特图,伯德图绘制奈奎斯特近似曲线,绘制伯德图近似折线等17.绘制开环幅相曲线 起点,终点,过程姿态等18.奈奎斯特稳定判据 Z=P-R19.对数频率稳定判据 正,负穿越20.相角稳定裕度21.幅值稳定裕度22.串联超前校正23.串联滞后校正24.求解脉冲传递函数拉氏变换域求解C(s)

3、,加“.“,变成”(Z)”。25.W变换与劳斯稳定判据判据Z域稳定区单位圆内部映射到W域稳定区虚轴左侧双线性变换:26.离散系统的稳态误差,型别开环脉冲传递函数分母中Z=1的极点个数,称为离散系统的型别27.离散系统的静态误差系数及稳态误差28.最少拍系统设计通常称一个采样周期为一拍。最少拍系统,指在典型输入作用下,能以有限拍结束响应过程,且在采样时刻上无稳态误差的离散系统。29.无纹波最少拍系统设计附加条件:31.非线性系统的线性部分的等效变换 输入置零,线性部分弄成一团,随便串位置32.非线性系统稳定性分析的描述函数法非线性系统奈奎斯特判据,确定周期运动点并判断其稳定型。 第二等级考点(2

4、9个)1.系统建模电机,齿轮,阻尼器,受力分析等2.绘制系统结构图信号线,引出线,比较点,方框等,U和I相间隔3.绘制系统信号流图源节点,阱节点,混合节点,前向通路,回路,不接触回路等,U和I相间隔4.扰动作用下的闭环传递函数5.闭环系统的误差传递函数6.一阶系统数学模型7.一阶系统单位阶跃响应8.一阶系统单位脉冲响应9.一阶系统单位斜坡响应10.一阶系统单位加速度响应11.二阶系统性能的改善a) 比例微分控制 b)测速反馈控制12.扰动作用下的稳态误差13.幅角原理复变函数F(s)选取方案及其特殊情况14.等M圆图15.等N圆图16.复合校正装置的全补偿条件17.PID控制规律18.串联滞后

5、超前校正19.串联综合法校正20.串联工程设计方法21.Z变换,Z反变换22.零阶保持器23.线性定常系统差分方程及其解法a) 迭代法b) Z变换法24.修正Z变换25.S域到Z域的映射26.朱利稳定判据27.非线性特性的等效增益继电,死区,饱和,间隙,摩擦特性变增益分析28.相平面的基本概念29.奇点和奇线奇点:焦点,节点,鞍点奇线:特殊的相轨迹。稳定,不稳定,半稳定极限环第三等级考点(26个)1.其他类型二阶系统其他响应及指标2.高阶系统的时域分析3.动态误差系数 4.减小或消除稳态误差的措施a) 增大系统开环增益或扰动作用点之前系统的前向通道增益b) 在系统的前向通道或主反馈通道设置串联

6、积分环节c) 采用串联控制抑制内回路扰动d) 采用复合控制方法5.附加开环零点的作用6.系统性能的分析i. 闭环零极点与时间响应,闭环偶极子ii. 系统性能的定性分析7.尼科尔斯图定义8.幅角原理9.控制系统的频带宽度10.系统带宽与信号频谱的关系11.尼克尔斯,等M圆,等N圆曲线题12闭环系统频域指标和时域指标的转换 二阶系统,高阶系统工程指标;系统带宽的确定13.反馈校正,复合校正14.香农采样定理15.采样周期与开环增益对稳定性的影响16.离散系统的动态性能分析17.PID数字控制器的实现18.线性一阶,二阶系统的相轨迹19.非线性系统的相平面分析20.非线性系统的并联,串联简化21.引入串

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论