




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、基于天池数据的用户行为分析报告摘 要电商每天都面临着大量的用户访问行为数据信息,这些看似零散的数据,其实隐藏着巨大的商业逻辑。本报告基于阿里巴巴集团的大数据科研平台“天池”中的4月15日至8月15日这四个月之间的用户行为数据,分别从用户角度和品牌角度对这些数据进行了数据描述,数据相关分析、聚类分析、预测分析。【关键词】:大数据;相关分析;聚类分析 目 录1 前言32 数据介绍33 数据分析43.1 描述统计分析43.1.1 用户行为描述统计4表3.1 用户行为统计表43.1.2 关于品牌的用户行为描述统计4表3.2 关于品牌的用户行为统计表4表3.3 被购买排名前十的品牌53.2 相关分析63
2、.2.1 用户行为的相关分析6表3.4 用户行为相关性分析63.2.2 关于品牌的用户行为的相关分析7表3.5 关于品牌的用户行为相关性分析73.3 聚类分析83.3.1 用户行为的聚类分析8表3.6 用户购买次数分组统计83.3.2 关于品牌的用户行为的聚类分析9表3.6 最终聚类中心93.4 预测分析93.4.1 简单模型预测9表3.7 购买时间模型描述10表3.8 购买时间模型统计量104 总结10表3.1 用户行为统计表5表3.2 关于品牌的用户行为统计表5表3.3 被购买排名前十的品牌6表3.4 用户行为相关性分析7表3.5 关于品牌的用户行为相关性分析8表3.6 用户购买次数分组统
3、计9表3.6 最终聚类中心10表3.7 购买时间模型描述11表3.8 购买时间模型统计量11图3.1 用户购买次数图10图3.2 在4月15日到8月15日之间用户购物次数图11图3.3 以星期为周期的购买模型121 前言这几年,电商的价格战打得不亦乐乎,继去年的“双 11 大促”和“618 狂欢节”之后,电商之间以价格为主要诉求的大规模促销层出不穷,几乎要把所有能够用来造势的节日都用上了,就今年5月份来说,不仅有“五一疯狂促”、“母亲节活动促销”,还有“520促销”,即使不是节日,电商们仍有层出不穷的名目来促销。而消费者们作为这场游戏中的弱者,不断地被这些真假价格战挑逗着和引导着。然而,在当今
4、的商场上,还有另外一类企业不是通过简单粗暴的价格战,而是通过对数据的充分使用和挖掘而在商战中获胜的。电商每天都面临着大量的用户访问行为数据信息,这些看似零散的数据,其实隐藏着巨大的商业逻辑,哪些品牌吸引到了这些受众?哪些用户是有潜力客户?访问行为数据的分析评估随着电商行业竞争趋势的加强,电商在数据处理能力上的强弱已经成为发展核心命脉,电商期待通过数据挖掘将电商网站的用户、内容、营销进行有效的连接,既能数据化客观地评估和分析营销的效果,又能发掘出真正潜在的客户。合作伙伴通过这类数据分析,就能获悉自己的产品在各区域、各时间段、各消费群的详细情况,进而判断市场趋势,有的放矢地刺激用户需求。2 数据介
5、绍本报告中使用的数据来自于阿里巴巴集团的“天池”,一共有182880条数据,数据真是有效,记录了用户在4月15日到8月15日这4个月之间在天猫的行为日志,其中涉及到884位天猫用户,涉及到的天猫品牌有9531个。用户行为分为4类,其中“0”代表“点击”,“1”代表“购买”,“2”代表收藏,“3”代表加购物车。表2.1 大数据的内容名称记录内容user_id用户brand_id品牌号type用户操作行为visit_datetime用户行为发生时间本报告期望通过对这些数据进行有效的分析和挖掘,了解用户的品牌偏好,并预测他们在将来一个月内对品牌下商品的操作行为。3 数据分析3.1 描述统计分析3.1
6、.1 用户行为描述统计表3.1 用户行为统计表购买点击收藏加购物车总计N884884884884884极差83237652112406极小值00001极大值83237652112407合计69841745391204153182880均值7.9197.441.360.17206.880.3167.5930.1480.0267.817标准差9.401225.7694.4070.775232.425方差88.37550971.74619.4180.60154021.507偏度2.8712.8456.0237.1052.7630.0820.0820.0820.0820.082峰度13.72714.1
7、1445.81366.78113.2560.1640.1640.1640.1640.164由表3.1可知,用户在182880次访问行为中,居首位的是点击,达174539次,接着依次是购买、收藏、加购物车,分别达6984、1204、153次。说明大部分用户对网络购物比较克制,购买前会经过多次点击浏览。购物车的使用率不高,只有及少数的人使用购物车,造成这种情况主要是因为购物车的作用只是让多件商品交易过程变得更简单,不用卖家修改邮费,节省卖家的时间,但是对于买家来说一则是不长买多件商品,二是使用购物车对买家没有实质性的实惠和帮助,所以购物车对买家的吸引力不大。3.1.2 关于品牌的用户行为描述统计表
8、3.2 关于品牌的用户行为统计表点击购买收藏加购物车总计N95319531953195319531极差31961243683355极小值00001极大值31961243683356合计17453969841204153182880均值18.310.730.130.0219.190.7860.0310.0070.0020.815标准差76.7042.9810.6720.16979.567方差5883.5798.8890.4520.0296330.847偏度17.98415.71523.20919.57118.0540.0250.0250.0250.0250.025峰度492.677450.952
9、1003.563645.655502.3830.050.050.050.050.05有表3.2可见,数据中共涉及9531个品牌,被用户点击次数最大值为3196次,而被用户购买、收藏、加购物车次数最大值则分别为124、36、8次。从品牌被点击的极差、均值及方差等数据来看,不同品牌的表现力差别很大。表3.3 被购买排名前十的品牌品牌号点击购买收藏加购物车总计78683196124360335626831106860011921119620766830214727791791585185586899904380104114020113942181190142611240404112859056940
10、001093228124238401284由表3.2和表3.3可知,品牌号为7868的商品表现最好,最受用户欢迎,虽然加购物车次数为0,但被点击、购买、收藏次数分别是3196、124、36次,三种行为皆局第一。3.2 相关分析相关分析是用相关系数来表示两个变量间相互的直线关系,并判断其密切程度的统计方法。相关系数没有单位,在-1+1范围内变动,其绝对值愈接近1,两个变量间的直线相关愈密切,愈接近0,相关愈不密切。相关系数若为正,说明一变量随另一变量增减而增减,方向相同;若为负,表示一变量增加、另一变量减少,即方向相反。用户对品牌的点击、收藏及加购物车的行为,与用户购买的行为可能存在一定的相关线
11、,接下来为了验证这种想法,将对数据进行相关分析。3.2.1 用户行为的相关分析表3.4 用户行为相关性分析购买点击收藏加购物车购买相关系数1.592*.142*.090*P值000.008N884884884884点击相关系数.592*1.181*.155*P值000N884884884884收藏相关系数.142*.181*1-0.007P值000.841N884884884884加购物车相关系数.090*.155*-0.0071P值0.00800.841N884884884884*表示按双侧检验,检验水准0.01,该相关系数具有统计学意义。表3.4结果显示,购买次数与点击、收藏和加购物车次数
12、的P值均小于0.05,说明用户购买次数与点击、收藏、加购物车次数都具有一定的相关性。购买次数与点击、收藏、加购物车次数的相关系数分别为0.592、0.142、0.090,说明购买次数与点击、收藏、加购物车次数均呈正相关,且相关性依次是由强到若。点击对购买的影响最大,表明经常浏览商品的用户购买的可能性更大。加购物车次数对购买次数的影响最小,相关系数只有0.09,这于实际情况相符合,因为购物车的主要作用是方便卖家,让多件商品交易过程变得更简单,不用卖家修改邮费,节省卖家的时间,但是购物车对于买家没有实惠和帮助,所以大部分用户购物时不使用购物车。如果能针对购物车做一些消费刺激活动,比如“但比订单满1
13、00元,减10元”等满减活动,则能很好地刺激卖家使用购物车购物的欲望。3.2.2 关于品牌的用户行为的相关分析表3.5 关于品牌的用户行为相关性分析点击购买收藏加购物车点击相关系数1.787*.650*.328*P值000N9531953195319531购买相关系数.787*1.514*.256*P值000N9531953195319531收藏相关系数.650*.514*1.185*P值000N9531953195319531加购物车相关系数.328*.256*.185*1P值000N9531953195319531*表示按双侧检验,检验水准0.01,该相关系数具有统计学意义。表3.5结果显
14、示,品牌被购买次数与被点击、被收藏和被加购物车次数的P值均为0,说明用户购买次数与点击、收藏、加购物车次数都具有相关性。品牌被购买次数与被点击、被收藏、被加购物车次数的相关系数分别为0.787、0.514、0.256,以表3.4中的相关系数相比,关于品牌的用户行为相关性要比关于用户的行为相关性更强。品牌被购买次数与被点击、被收藏、被加购物车次数均呈正相关,且相关性依次是由强到若。品牌被点击对被购买的影响最大,表明经常被浏览的商品被用户购买的可能性更大;其次品牌被收藏与被购买的相关系数也超过了0.5,说明收藏品牌的用户是潜力用户,如果商家对经常点击与收藏品牌的用户做些诸如促销等消费刺激,可有效提
15、高品牌被购买率。3.3 聚类分析3.3.1 用户行为的聚类分析图3.1 用户购买次数图图3.1是用户购买次数的分布图,从图中可以看出,随着购买次数的增加,用户数基本是呈现逐渐下降的,尤其是在购买次数大于35次以后,人数基本上趋近于零,因此,采用集中趋势度量法中对购买次数来度量集中趋势,在区间的选择上应该采用异距数列,即开始的区间选择应该较小,而后面的区间选择可以适当的将组距扩大。根据用户的购买次数,将用户分为4类,详细见表3.6。表3.6 用户购买次数分组统计购买次数点击收藏加购物车044.27 0.61 0.04 1394.05 0.67 0.13 48182.61 1.42 0.27 92
16、0295.18 1.67 0.13 2083527.39 3.62 0.38 由表3.6可知,随着用户的点击和收藏次数的增加,用户的购买次数也会增加,购买次数与点击、收藏次数是呈正相关。而加购物车的次数对购买次数则没有这样的影响,说明加购物车与用户购买次数没有明显关系。3.3.2 关于品牌的用户行为的聚类分析对品牌的用户行为进行K均值聚类分析,得如下结果:表3.6 最终聚类中心聚类1234点击3061222123196购买9341124收藏16036加购物车0100原有的9531个品牌被聚合成4类,第4类为最受欢迎的品牌,无论是点击、购买还是收藏都是局首位,平均次数分别是3196、124、36
17、,这样的品牌知名度、宣传度、服务等各方面比较符合顾客的需求;第2类品牌还比较受欢迎,但是其在点击转化为购买率上稍逊于第4类品牌;第1类品牌和第3类品牌需要提高自身的知名度与服务,可以加强宣传或者做些刺激消费的活动,当然也要提高自身的服务质量。3.4 预测分析用户网络购物行为往往存在一些规律,通过spss中的“分析”“预测”“创建模型”对用户在4月15日到8月15日这4个月之间的用户行为进行分析,有可能得出一些规律。图3.2 在4月15日到8月15日之间用户购物次数图3.4.1 简单模型预测表3.7 购买时间模型描述Model DescriptionModel TypeModel ID购买模型_1Simple Seasonal表3.8 购买时间模型统计量Model StatisticsModelNumber of PredictorsModel Fit statisticsLjung-Box Q(18)Number of OutliersStationary R-squaredStatisticsDFSig.购买-模型_10.71534.17316.0050图3.3 以星期为周期的购买模型由表3.8可知,R方为0.715,模型有较好的拟合度,用户网络购买行为存在周规律,每周的工作日和休息日用户的活跃度和网络购物行为不同,但因为不知道天池数据的时间是具体哪
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业消防培训合同范例
- “家国情怀”培养视域下人教版和统编版高中历史教材变化研究
- 共享公寓转让合同范例
- 加工类技术合同范本
- 个人项目合作合同范例
- 保姆用人合同范例
- 借款消费合同范例
- 东鹏控股合同范例
- 中介拆迁合同范例
- 企业花艺服务合同范例
- 少先队员六知六会一做课件
- 探讨小学语文作文教学中的仿写训练 论文
- 《建筑工程质量与安全管理》教案
- 商场安全隐患及防范措施
- 冷库使用安全知识培训
- 2023信息系统密码应用高风险判定指引
- 2023年12月全国大学外语等级考试考务工作手册
- 第三单元《 There is a cake on the table 》大单元教案 四年级英语下册(重大版)
- 普通高中语文课程标准课件
- 你是独一无二的自己主题班会课件
- 交通运输行业驾驶员违规处理规范培训
评论
0/150
提交评论