系统稳定性意义以及稳定性地几种定义_第1页
系统稳定性意义以及稳定性地几种定义_第2页
系统稳定性意义以及稳定性地几种定义_第3页
系统稳定性意义以及稳定性地几种定义_第4页
系统稳定性意义以及稳定性地几种定义_第5页
免费预览已结束,剩余5页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、实用标准文案系统稳定性意义以及稳定性的几种定义一、引言:研究系统的稳定性之前,我们首先要对系统的概念有初步的认识。在数字信号处理的理论中,人们把能加工、变换数字信号的实体称作系统。由于处理数字信号的系统是在指定的时刻或时序对信号进行加工运算,所以这种系统被看作是离散时间的,也可以用基于时间的语言、表格、公式、波形等四种方法来描述。从抽象的意义来说,系统和信号都可以看作是序列。但是,系统是加工信号的机构,这点与信号是不同的。人们研究系统还要设计系统,利用系统加工信号、服务人类,系统还需要其它方法进一步描述。描述系统的方法还有符号、单位脉冲响应、差分方程和图形。电路系统的稳定性是电路系统的一个重要

2、问题,稳定是控制系统提出的基本要求,也保证电路工作的基本条件; 不稳定系统不具备调节能力, 也不能正常工作, 稳定性是系统自身性之一,系统是否稳定与激励信号的情况无关。对于线性系统来说可以用几点分布来判断,也可以用劳斯稳定性判据分析。对于非线性系统的分析则比较复杂,劳斯稳定性判据和奈奎斯特稳定性判据受到一定的局限性。二、稳定性定义:1、是指系统受到扰动作用偏离平衡状态后,当扰动消失,系统经过自身调节能否以一定的准确度恢复到原平衡状态的性能。若当扰动消失后,系统能逐渐恢复到原来的平衡状态, 则称系统是稳定的,否则称系统为不稳定。精彩文档实用标准文案稳定系统不稳定系统稳定性又分为绝对稳定性和相对稳

3、定性。绝对稳定性。如果控制系统没有受到任何扰动,同时也没有输入信号的作用,系统的输出量保持在某一状态上,则控制系统处于平衡状态。(1)如果线性系统在初始条件的作用下,其输出量最终返回它的平衡状态,那么这种 系统是稳定的。(2)如果线性系统的输出量呈现持续不断的等幅振荡过程,则称其为临界稳定。(临界稳定状态按雅普洛夫的定义属于稳定的状态, 但由于系统参数变化等原因, 实际上等幅振 荡不能维持,系统总会由于某些因素导致不稳定。 因此从工程应用的角度来看,临界稳定属 于不稳定系统,或称工程意义上的不稳定。 )(3)如果系统在初始条件作用下,其输出量无限制地偏离其平衡状态,这称系统是不稳定的。实际上,

4、物理系统的输出量只能增大到一定围,此后或者受到机械制动装置的限制,或者系统遭到破坏,也可以当输出量超过一定数值后,系统变成非线性的, 从而使线性微分方程不再适用。因此,绝对稳定性是系统能够正常工作的前提。而是在系统到达稳态之前, 它的瞬态响应常常表现为阻尼振荡过程。相对稳定性。除了绝对稳定性外, 还需要考虑系统的相对稳定性, 即稳定系统的稳定程 度。因为物理控制系统包括一些储能元件, 所以当输入量作用于系统时,系统的输出量不能 立即跟随输入量的变化,精彩文档实用标准文案在稳态时,如果系统的输出量与输入量不能完全吻合,则称系统具有稳态误差。2、一个系统对任意有界的输入,其零状态响应也是有界的,则

5、该系统称为有界输入有界输出稳定系统。即设 Mt , My为正实常数,如果系统对于所有的激励|f (t) <=Mt ,其零状态响应为|y (t) |<=My则系统是稳定的。对于不稳定系统来说,不能断言其输出幅值 为有界。3、线性系统在初始条件为零时,输入理想单位脉冲函数8,这时系统的输入称为单位脉冲响应。若线性系统的单位脉冲响应函数随时间趋于零,则系统稳定。若趋于无穷,则系统不稳定。若趋于常数或者等幅振荡,这时趋于临界稳定状态。般反馈系统如图,此时系统的传递函数为mi 工G(5)X(s) 1 + G(s)H(s) z少工口不1+G(s)H(s)=0,如果特征根落认, ' &#

6、39; ',系统的特征万程为在s复平面的左半部分,系统就是稳定的。证明:系统输入理想单位脉冲函数8(t),它的Laplace变换函数等于1 ,所以系统输出G(s) G(s)的Laplace变换为1+G(s)H(s)-鸟)($ 一 叼)6 - % )中,si (i=1,2,,n)为系统特征方程的根,也就是系统的闭环极点。设 n个特征根彼此不等,并将上式分解成部分分式之和的形式,即工二 一 F- +F- = V 一$ 一 岳 ,¥5丁s-s &S - 51_"r ,式中,ci (i=1,2,n)待定系数,其值可由Laplace变换方法确定。精彩文档实用标准文案对

7、上式进行Laplace反变换,得到系统的脉冲响应函数为。可以看出,要满足条件,只有当系统的特征根全部具有负实部方能实现。因此,系统稳定的充要条件:系统的特征方程根必须全部具有负实部。反之,若特征根中有一个以上具有正式部时,则系统必为不稳定。 或者说系统稳定的充分必要条件为:系统传递函数的极点全部位于s复平面的左半部。若有部分闭环极点位于虚轴上,而其余极点全部在s平面左半部时,便会出现临界稳定状态。三、稳定性分析:【本文仅分析线性时不变(LTI)电路的稳定性。判断一个系统是否稳定可以从时域或复频域两方面进行讨论。本文不对含受控源电路的稳定性进行分析】例1 :对因果系统,只要判断 H(s)的极点,

8、即A(s)=0的根(称为系统特征根)是否都在左半平面上,即可判定系统是否稳定,不必知道极点的确切值。 一一,5+155, 某线性时不变电路的网络函数为,当输入为单位阶跃函=明般)数e时,电路零状态响应的象函数为'* "I *71-0,000210,0002dji *_ q用留数法解得5'.。考虑到0.0002<<1 ,取上式的拉普拉斯逆变换,,= (17 ' +0.0002产。上式 中的前两项“一。)e(e)是衰减函数,第三项0,0002e £()当t较小时,可忽略不计,但是当t较大时,这个正指数项超过其他两项并随着的增长而不断增大,则电

9、路不稳定。实际的电路系统不会完全是线性的,这样,很大的信号将使设备工作在非线性部分,精彩文档实用标准文案不仅使系统不能正常工作,有时还会发生损坏和危险。简单电路分析:图1 RLC笄联电路图2坛界电路H(S)廿人)作出运算电路图如图2,其网络函数为-2- + q =0令分母RPC 元 ,其根即为该网络函数的极点。P1J = $12解得12 _2kQ LC当电路参数变化时,上式会有四种形式及相应的电路变化:fL>l iLD 当2期匚时,Pl,2如上式,是两个不相等的负实根,响应的自由分量由两个衰减的指数函数组成,属于过阻尼振荡。Pt-j = - 2R .时,此时有两个相等的负实根,属于临界阻

10、尼振荡。当时,上式可写为:瓯比7”第),是实部为负的两个共轲复根,响应的自由分量是一个衰减的正弦函数,属于欠阻尼振荡。当Rp= 8时,为两个共轲虚数根,响应为等幅振荡。以上前三种形式其网络函数的极点均在s平面的左半平面,第四种形式其网络函数的极点在虚轴上,电路均是稳定的。可见四种形式所对应的网络函数的极点仅与电路的结构及参数有 关,而与激励无关。精彩文档实用标准文案由网络函数H(s)的极点分布可以很方便地得出LTI电路是否稳定的结论。(1)当H(s)的所有极点全部位于 s平面的左半平面,不包含虚轴,则电路是稳定的。(2)当日在s平面的虚轴上有一阶极点,其余所有极点全部位于s平面的左半平面,则电

11、路是临界稳定的。(3)当H(s)含有s右半平面的极点或虚轴上有二阶或二阶以上的极点时,电路是不稳定的。四、连续因果系统稳定性判断准则一罗斯-霍尔维兹准则:所有的根均在左半平面的多项式称为霍尔维兹多项式。必要条件一简单方法实系数多项式A(s)=ansn+ +a0=0的所有根位于左半开平面的必要条件是:(1)所有系数都必须非0,即不缺项;(2)系数的符号相同。例 1 A(s)=s3+4s2-3s+2例 2 A(s)=3s3+s2+2例 3A(s)=3s3+s2+2s+8符号相异,不稳定a1=0 ,不稳定需进一步判断,非充分条件。(二)罗斯列表将多项式A(s)的系数排列为如下阵列一罗斯阵列 第 1

12、行 an an-2 an-4第 2 行 an-1 an-3 an-5第3行 -1-3-5它由第1, 2行,按下列规则计算得到:精彩文档实用标准文案cn 1an 1anan 2an 1an 3cn 3an 1anan 4an 1an 5第4行由2, 3行同样方法得到。一直排到第 n+1行。罗斯准则指出:若第一列元素具有相同的符号,则A(s)=0所有的根均在左半开平面。若第一列元素出现符号改变,则符号改变的总次数就是右半平面根的个数。举例:例1 A(s)=2s4+s3+12s2+8s+2罗斯阵列:21222 121 818.50第1列元素符号改变2次,因此,有2个根位于右半平面。注意:在排罗斯阵列

13、时,可能遇到一些特殊情况,如第一列的某个元素为0或某一行元素全为0,这时可断言:该多项式不是霍尔维兹多项式。例2 :低通滤波器的稳定性。如图4所示为低通滤波器,放大器是理想的,为使系统稳定,精彩文档实用标准文案应满足什么条件?分析:画出运算电路图,如图 5Ifin10 oi匕IF 4:低逝谑波需图5运算电路对节点列出KCL方程匕(5)*I M I It Ii1 15S(2)(3)又根据放大器部分电路,-j知,匕($)二 上/EC)由(3)得出代入(2)式,三一砧 4 1)七(3)整理得:则网络函数为由劳思一赫维茨判据,系统稳定的条件是(3 K)>0 ,即 K<3。五、稳定性的意义:

14、稳定性是系统的的一种固有特性,它只取决于系统部的结构和参数,而和初始条件和外部作用的大小无关。稳定性是控制系统重要的性能指标之一,是系统正常工作的首要条件。以一些工程实例来举例说明系统稳定性的意义:精彩文档实用标准文案(1)开关电源系统不稳定现象分析开关电源中,其核心是 Dc Dc变换器,Dc Dc变换电路能够促使直流电压实现大 围的升、降,并且实现的效率较高、比较容易控制,因此其在工业控制和电力传输等领域中应用广泛。可是,DC-DC变换电路也可能存在一定的偏差,如谐波振荡误差等,产这些偏 差将直接影响到电源系统的稳定性。而采取谐波补偿电路将有效改善开关电源系统的稳定 性。下面主要分析谐波振荡

15、等引起开关电源系统丧失稳定性的原理和原因。谐波振荡是由峰值电流取样和固定频率同时工作所形成的结果,其发生的原理如下图l所示。当开关电源的输入电压和负载发生变化时,从而会引起开关电源电流发生变化,即发生扰动,在扰动产生后,系统能否趋于稳定的运作,关键在于系统电流是否对扰动如何作出收敛响应。而系统电流收敛的发生一般有两种途径,一是在空占比(D)小于0. 5时产生收敛,一是空占比(D)大于0. 5时产生收敛。这两种收敛环境下,系统对扰动所表现出的稳定状态是不同的。能)。小十Q3OQ大于。3图L电流此-DC下的电流谐波餐薄设Io为扰动没有发生时的电感电流初始值,设 A i o为电流上升时产生的扰动量,设4it为电流下降时产生的扰动量,设 d为电感电流占空比发生的扰动量,设 m为电流在上升时所发生的斜率,设眦为电流在下降时所产生的斜率,它们之间的关系式如下:从而可以得出以下式子:'-随着周期的增加,其所发生电

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论