冀东油田浅层非均质油藏CO_2驱数值模拟与方案设计_曹亚明_第1页
冀东油田浅层非均质油藏CO_2驱数值模拟与方案设计_曹亚明_第2页
冀东油田浅层非均质油藏CO_2驱数值模拟与方案设计_曹亚明_第3页
冀东油田浅层非均质油藏CO_2驱数值模拟与方案设计_曹亚明_第4页
冀东油田浅层非均质油藏CO_2驱数值模拟与方案设计_曹亚明_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、126石油天然气工程201 I年5月冀东油田浅层非均质油藏co2驱数值模拟与方案设计曹亚明,郑家朋,孙蓉 (中石油黄东油田分公司钻采工艺研究院,河北唐山063000)郑立朝(中石油賈东油田分公司南堡油田作业区,河北庸山063000)摘要冀东油田高逵北区NR (ft陶组6层油藏厲干天代边底水尖普適禅油油蔵.为了改等开发效果. 决定祖主体部位开晨CQ驱油试脸。建立了将合油H特点的三第地质模型.应用数值模拟技术.对3种 不同CQ注气方戎一连续气駆、气水交嘗驱、气+泡汰交挣駆进行了评价赠选并进行注气参数的篩选 优化.由于N朋油蔵非均质性比较严車,为防止注气过程中过早地发生气齋.在注气前.进行了前期调

2、剖段塞进行.计算结果表明:试验区对CO曼具有较好适应性,以CO +泡沬交挣注入气泡沬体枳比) 为最佳允孤件方式C()z的最佳用量为Q 055 HCP V预测试轸区的综合含水达到99. 2%时的采收率比边 底水驱提高2. 29个百分点。关峨词天伐边底水驰:普通租I油;CQ +泡滋交曹駆;数值換报中图分类号TE357. 45文献标志码A 文章编号1O0S9752 (2014) 05-0125-03CO,朋油技术作为-种有效的提高采收率方法国外早在20世纪60和70年代已经应用于油IH开 发Z.近年来.随着低渗透油藏不断投入开发.在我国吉林油田、大庆油田、中原油田、胜利油田、 江苏油田进行现场试验.

3、取得了较好的效果 】。冀东袖田高浅北Ng6油藏从2010年起实施T CO2吞 吐技术.取得了较好增油效果.但随着吞吐轮次的增加.増油效果逐渐变屋。通过实施C(人乐油技术 试验.探索岀浅层非均质油藏提高采收率新途径也为改善注层边底水油藏开发效果.提供借鉴。1C()2驱提高原油采收率的原理CO2驱提高原油采收率作用可以分为CO2混相作用和CQ非混相作用。由于高浅北Ng6油藏原油 为普通稠油.地层压力低.达不到泯相条件.屈于非混相朋。主耍作川机理:降低原油黏度.使原油膨 胀降低界面张力.溶解气驱.乳化作用及降压开采。CO在油中的溶解度随压力的増加而增加.当 压力降低时.C()2从饱和C()2的原油中

4、溢出并驱动原油.形成溶解气驭;由C()2形成的自由气饱和度 可以部分代替油藏中的残余油血.2试验区概况试验区位于冀东油山高浅北g6油藏主体高部位.岩性疏松属于辫状河高孔高渗砂岩储层.存 在边底水.血枳(X 45km:平均渗透率12J2mD平均孔隙度26 6%;原油属于未饱和常规側油.地层 原油黏度9(1 34mPas.地面原油密度Q 9562g/cm$油藏温度65工、油藏类型是构造岩性层状底水 油藏平均地层压力1& 23MPa.收l*BM 20)4-01-03基金项目中国石油天糕代股份有限公司十二五科技项目(2O11BHIO2)。作者简介曹亚明(1972-),男.1995年西南石油大学

5、毕业.工程碩士.高级工移师.现主要从事三次采油研究工作。X 1存在问题高浅北区N&6油藏非均质性比校严啦.优势渗流通道校发育。目前存在问题:油水黏度比高.底 水锥进现象严咆;油藏综合含水持续升高.递减率居高不下.产呈快速下降;现右井网和骊瞽方式下采 收率低.采出程度低.至2012年12月累计生产原油L 64 X 104综合含水率96.8%采出程度 1U 9%。Z 2C()2驱可行性分析髙浅北NgG油藏具有一定的物质墓础.试验区采出程度较低.井间仍有较大的剩余油潜力;丿I网 较完善.能够利用现右井形成右效的注采井网;试验区进行过CL吞吐施丁.取得了较好的效果.为 下步进行CO驱提供借鉴。

6、3 CO驱方案参数优化设计选用(、M(;软件进行数値模拟.建立试验 区模別(图1)研究的冃的层为新近系馆陶组 (Ng) 6层.共划分为20个模拟层.模拟区同 时也对虑边底水的影响.在模型的边部和下部 设置边底水。采用U角网格系统划分网格.建 立的模型网格数为136X 59X 20= 160480.在 高浅北区Ng6油藏试验区历史拟合的基础上. 对部分井生产悄况进行调帑.数值模拟区包括 25 I I采油井.无注水井.苴中2丨1注气井。A 1驱替方式优选在历史拟合的基础上.根据目前地F流体 分布和压力分布.对试验区预测了 20年。若以 99.2%为经济极限侖水率.预测边底水张最终 采收率为la 0

7、7%结果见表1,模拟对比C()j连续气骡、注CO?的气水交 兽及CO 4-泡沫的仝榕注入骡咨方式下开发效 果.并与边底水骊方案进行对比。由结果可血. CO连续气骊、气水交替张和C()24-泡沫骊的 最终采收率均高于边底水驳.其中CO.H-泡沫 報提高采收率幅度显大.见图2。分析原因. 试验区为疏松砂岩油藏.优势渗流通道发育. 在注气过程中.容易发牛气帘导致气呱效果 下降.泡沫体系可以有效封堵气帘通道.延氏 发生代窜时间.进一步提高采收率.建议选择 C()? +泡沫交替注入方式。A 2注入参数优化设计通过模拟计算对CO報方案进行了影响伏I 索分析和优化设计.主要讨论了段塞大小、注 入速度、单井注

8、入参数尊因索的影响。图1油藏数值模拟模型示意图注人方式昴终采收率捉离采收幣/%边桂水報H 07< OZ违绒气序It 21. 13花水交件敷14. 13L 36C()2+泡沫腋U 14Z 07» 1驱替方式对代驱效果的影响图2不同驱瞽方式下的含水率随采出程度的变化 Z 1注入总量优化设计注入C4 +泡沫体系总注入帚计算结果如图3、4所示。在相同的时间内设计注入总帚分别 为a 035. (104、(105、(106、a 08, a 10HCPV (婭类孔隙体枳).共6个CQ骏方案。计算结果表71994-2014 China Academic Journal Electronic P

9、ublishing House. All rights reserved, ki.nct第36卷第5期乐世豪等:稠油降黏菌的性能评价及现场应用 131 明:在疏松砂岩模型下.注入段寒越大.注气帚越多.气骡波及体枳越大.开发效杲越好,但随着注入 倍数的增加.提高采收率増加辎度逐渐减少.换油率减小。综合指数存在最优值.根据数值模拟计算结 果.推荐注入段塞为Q O55HCPV.rUMH $»«*8 6 4 20.6 a a642086422.22.2.1.1.1.1.%/脈畧帐宦瑕1.00. 030. 050.070. 090.11注入段电/HCPV0.00.04 0. 05 0

10、. 06 0. 07 0.08 0. 09 0. 1 0. 11 注入段«/IICPV2 0 8 6 4 2 h LO.O.O.O.掾£皈图3提高采收率换油率随注入星变化曲线图开发效果综合指数随注入呈的变化曲线3.2 2注入速度优化设计单井LI注入速度分别为10. 20. 30.40、50、60t ft 6个方案.计算结果如图5所 示.可以看出:单井H注气在2040t时的提 髙采收率差别不大;当日注量超过40t的提高 采收率幅度明显下降。占虑到现场施T的可行 性.该试验区合理注入速度为3040l/d选择平均单井日注入畐为35t则2【1井日总注入最 为 70t。3.3 CO?

11、驱最优方案预测在历史拟合的基础上.根据目前地下流体 分布和压力分布.应用优化的高浅北Ng6油藏 CQ注人参数.对试验区20年的开采效果进行了预测 率99. 2%最终采收率15 14%。2 29%增产原油 a 98X10"。2L-020304050607080饥井注气速度(t.d1)图5提高采收率陌单井日注入豎变化曲线(图6、7)。结果是在2032年试验区平均含水与水骡相比.试验区井组内采收率提高2 07%.显终提禽采收率71994-2014 China Academic Journal Electronic Publishing House. All rights reserved,

12、 第36卷第5期乐世豪等:稠油降黏菌的性能评价及现场应用 131 71994-2014 China Academic Journal Electronic Publishing House. All rights reserved, 第36卷第5期乐世豪等:稠油降黏菌的性能评价及现场应用 131 0 1111200420092014201920242029生产年份+历史 水职预测-A-CO/泡沫腿預测-OU*«<爲*水驱W测 历史 CO?驱預测0200520102015202020252030生产年份图6驱与水驱预测采出程度对比曲线图7 CO: +泡沬驱与水驱预测产呈对比曲线(

13、下转第131页)参考文献1于连东.世界禺油贡源的分布及其开采技术的观状和耀垫J特种油气儼2001. 8 (2) : 98703.2胡见义.牛矗玉中国虫油浙青資源的形成与分布J石油与天然气地质 1994. 15(2 : 105-112.3立华,囲华苏岳沏列油开采方法综述J 内毁占石油化匸2CO5. 15 (3) : 110-112.4孟科全折晓东.邹雯坟.等罔油降钻技术研究进展J天然气与石油.2009. 27 (3: 30345王念场.工松向廷生.新剑油田小井乔吐做生物采油曲沖的喘选JJ 石油大然气学报(江汉石油学院学报.2(X)8. 30 (1):32732&6111水娥.贫建新.一株

14、假唱匏債对為粘闊油的乳化邸斛作川J 环境科学与技术.2009. 32 (6): 29337李风梅.郭书海.牛之欣.等.伺油降解菌的筍选及其对胶质和沥青质生物降斛J土壤通报.2006. 37 (4: 764767.8张!£山.任明忠.藍光恋.等.做生物降昭作川对圈油理化性质的於响J.西HI石油学院学报.2003. 25 (5): 1-49包木太崔东阳.梁生康.等鼠李糖脂生物表面活性剂在憫油降粘中的应用初探J现代化2009. 29 (2: 138140】0孔液琼.飒力余跃忠.等.渤海稠油的做生物降解待件J油田化学.2009. 26 (4) : 132-43511工海耀但木太.韩红.尊一株

15、枯早芽抱杆備分离鉴定及典降無罔油待性J 深圳大学学报(理版).2009. 26 (3): 221-22712工存明.李大平.刘世!ft期油开采微生物的生理生化特征及典对勒油挣性的彬响J石油学报.2007. 28 5): 8992.13黄世伟.张廷山.寅逬.等.新珊油田罔油微生协开采矿场试賢研究J 天然气地球科学.2005. 16 (6): 776-780.14易绍金缪水裁.罔油降粘曲的降粘作用研究及氏现场应用J石油犬然任学报(江汉石油学院学报).2009. 31 1: 134-13715iA, im.孙铁用.零.闊油再效降解苗的降無特性及其应川J环境I.桎学加2009. 3 (1: 58759

16、016乐建科陈星宏.JL&.等中高温放古拉油田微生物嚥油可行性分析J科学技术与丁稈.2012. 12 (34) : 9158-9162.17张跃宙程休松刘借梢油流变特性的基咄实峻研究J待种油气厳.2009. 16 6) : 6466.编辑帅群(上接第127页4结论1) 首次在冀东油HI非均质严币的疏松砂岩油藏实施CO, 油施T.进行了防气帘的优化设计.以 延缓发生气窜的时间.提高气驶效果。2) 高浅北Ng6油藏对CQ+泡沫驱具有较好的适应性.对层间和层内的大孔道进行有效封堵的同 时.使CL有效地驶替剩余油丰富的低渗透区域.提髙开发效果。3) 数伉模拟结果表明:对于高浅北N&6疏

17、松砂岩油藏采用改进的CO.4-泡沫张可以大幅度提 高采收率。参考文献1厉宝财王允诚.王庆.等.葡篩花油Hi C()2吞I止采油现场试笠J 江汉石油学院学报 2003, 25 2): 9394.2李ift苏敬宝.轉学民.等.CO. Jfi油技术在孤岛油HI的应用J 石油钻探技仪2(X)2. 30 ( I): 72-73.3周建新.黄细水.黄晓荣.等.富民油田口”混相朋捉拓采牧华现场分析J 江汉石油学院学报.2003. 25 («): 136, 142.4找卫明张肚东张家仁.誓储家楼油IU C()2非混郴炊油试強及效聚评价J 特种油F嚴.2(X)1. 8 (1): 7982.5吕广忠伍増

18、贵.奕志安.等吉林油HI CO,试強X数值模拟和方案设计J 石油钻采工艺.2(X)2. 24 (3: 3941.6关谢丛姣.齐冉.等.C(”腋抛岛石油采收华数值枳拟研究J天业.2007. 22 (I): 112-141.7马涛.汤达祯.辖平.等.注C5提高采收奉技术现状J 油田化学.2007. 24 ( I): 379382.编辑黄衲71994-2014 China Academic Journal Electronic Publishing House. All rights reserved, Compgy. SINOPEC Changchun 13(XX)2. Jilin. China

19、)Abstract: Clastic reservoir in Lislui Fault Depression was a 1omt porosity and low permeability tight sandstone reservoir, there existed technical problems of poor borehole stability und difficulty for formation protection. To imp rove the borehole stability and fonnation protection an impermeable

20、drilling fluid system was studied and used The experimental results of temperature resistance, inhibition and fonnation protection indicate that the impennealile drilling fluid system has gixxl len”)erature resistance and stability. strong anti-sloughing capacity and low backflow pressure9 it can be

21、 used to seal pores in formation with permeability recover) value over 80% and low skin factor, and go(xl is obtainetl for formation pniteetionKey words: Lishu Fault Depression; in”)em)eal)le; bowhole stability; formation protection105 Design and Implementation of Finite State Machine in Mudstone Re

22、servoir Well-testing Interpretation SoftwareLIU Botso. WANG Xinhsi. WANG Qinghsi. WANG Zhso. XIA Jinjun (Fmt Author s Addrea: Key LulMatory o/' ExiJoru- lion Technologies Jor Oil and Gas Resourtvs O anlze I n血ci、) Mtmsln of EduciiUon: School of Computer Sc ience antze L nursity Jm吕一 diuu 434023

23、< Hubei. China )Abstract: Mudstone reservoir was one of I lie unconventional oil and juis resourves study of the reservoir was currenlly a highlight of rvsean h. The Mudstone Reservoir U ell-testing Inteqiretation Software was a well test inteqiretation software designed for the mudstone reservoi

24、r, and the discussion of design and implementation of finite state machine played a vital role in the Gnal implementalion of the software By taking VS2010 as the develo|)ment platform. design ideas and implpnientation skill of ils finite slate mac hine were elalxiratRl in detail. .Application result

25、s show that the logical stmcturp of the software designed with the Gnite state machine is dear. its operation is stable and reliable, and it has a good application value Key words: well-lest ing inleqiretation software; mudstone resen oir; finite state machine; S2010110 Dynamic Simulation and Optimi

26、zation for Horizontal Well Completion with Stinger of Bottom Water ReservoirYANG Qingsong、LIU Lu. MA Zhen. WANG Zhiming. XIAO Jingnan (Fim uihors Addrr: Ao. I Gz Priuciion Piam. Cltanpqin Oilfield Com/Miny. PetmChina. Yulin 7185(X). Sliaanxi. China )Abstract: Starting from lhe analysis of pmblems ex

27、isted in the boltoni-svater reservoirs in horizontal will production, an idea was proposed for water controlled coin iletion using center casing According to the principles of Gil rat ion mechanics, fluid mechanics and reservoir numerical simulation, a iniMlel of multi-MMiion well fw central casing

28、con屮lulion of horizontal uell prtMiuction. the dyiuiniic rules of long-ierm inflow in center casing completion of horizontal wells were studied in bottom water reservoirs. The effect ol inflow under condition of diflerenl inserting lengths of center cibings was contrastHl. The result indicated that

29、the coinjKir- ison of die given center casing ()1) with casing ID presented I lull the insert length of center casing was the key parameter of iiiflow profile atljustinent for horizontal wells, while there exited an opinul value of the center casing length. Case study result indicates that when the

30、center casing length is alx)ut 0. 325 time as lliat of horizontal section. its inflow |>n)fi|p and lM)reh<)le pressure(li>tri- bution can be imp roved uniformly. thu> the time of IxHtom-Mater breakthrough can be evidently slow down for lengthening the |)e- riml of waler-free oil producti

31、on, reducing water content ami enhancingoil remry and ;is well as for the optimal effwl of |M*nna- nenl in(l<»w control.Key word,: horizonlal well; center casing complelion;aler resenoir; multi-segment well model; numerical simulation116 Technical Reconstruction of Horizontal Well Completion

32、 in Low Permeability Thin Reservoirs with Bottom WaterQI Yin. LU Ling、SUI LQ. BAI XiQOhU. DU Xianfei. LIU Huiqiang (Finl Author $ Address: Resranh Cenwr Ji” I lira-tou Pfl mvabi/ity. Chanin Oilfieid Gmi/wjfiv. PetmChimi. Xian 71(X)18. Shaanxi. China ).Abstract: The low pnMlii(khon rate and quick inc

33、nase of water content in single well were the pniblems for the (levelopinent of low iMniMMbility an(l thin reservoirs with iMittom walur. The Yan 10 R(*senoir in Huaqing Oilfield was a typical low |Mnnral>i)ity 6.0ml) ) low formation pressure (0. 7MPa/100ni ) and low thidness (7. 2m ) reservoir w

34、ith ImHIoiii water. Numerical modeling %as carried out to determine optimal completion inotle for the horizontal wells l>y analyzing the resenoir characteristics. It Mas found out that the horizontal well was thmugthout the up|)er setlion of reservoir, the reconstructed lateral was 2 0 2. 6 |)er

35、100m, the distance was about 40 to 50 meters. the optimal reconstniction inode was co!n|M)site j)erforating of direction and deep layer penetration with |>erf<)rating depth alxiut Im. It is applied in 4 wells, the application results indicate that the single well production using horizontal we

36、ll is 4. 5 times that of straight well with water contenl of 5 4% and high dynannc fluid levels it has good stability of production. While in adjacent 24 straight wells, the average waler content is 35% it proves (lull the method can i叫)rove oil production of single well of the similar reservoirs.Ke

37、y words: iMrttom waler resenoir; low |)enneal)ility resenoir; linn reservoir; horizontal well; directional arfonilion; com- jxisit jierforation120 The Selection of Gas Lifting and Jet Pump Well and Its Optimized DesignLUO W6i. LIAO Ruiquan ZHANG Dingxue, LI Yong. WEN Jing (Fim Authors Addre s(IumI o

38、f PemJeuni Enmeenn. Yangtze I nitnHy: Key Liboratiry of Explorauvn Tet hnolupies fur ()d and Gm ReMmnes (Yangtze Unirersiiv ) Miniatry uj' Ediumion , Wuhan 430100 Hubei. China )Abstract: In allusion to the situation of a jet and gas lifting process combining of a (;/I. jet pump installed in the

39、Ixittom of gas lift well and the multistage gas lifting valves ubove. because the jel pump design was controlled by multipactors of the well. tluw were no a 細 of feasible methods of selecting gas lifl jel pump wpIIs and technolog) design. a researt h was carried out on the situation Kirsl according

40、to nuiss consenation, moiiMUiluin consenation. energy consenation and gas state e(|uati(M)of G/L jel pump, a calculation formula of the jet pump outlet pressure was derived, then a continuous gas lift technology design was coinl)ine( with jel pump tefhnologj* design the(leej)est point of injection n

41、as skillfully selected as the dynainic solution poinl. the node analysis method is used to derive a method for combined design of selecting jet gas lifting well and jet lifting Eventually the design of |)erfonnance curve for jet gas lifting pnMluction and the design of jet gas lifting under conditio

42、n of given gas injection volume are established by case study, and they are compared with conventional gas lifting technology, the obtained result can l)e used to solve the problem of well selection and the technological designKey words: G/L jet pump; continuous gas lift jet technolog) design; techn

43、olog) design of jet pump; technologic combina- lion; jet gas lifl design: produrlion performance curve125 Numerical Simulation and Scheme Design of CO2 Flooding in Shallow Heterogeneous Reservoirs ofJidong OilHeldCAO Yaming、ZHENG Jispeng. SUN Rong、ZHENG LiChSO (A加Address: Drilling and Oil Production

44、 Tethnulo- gv Reranh Inuiiuie of Juivn Oilfield. Tatiiati 063000, Hebei. China )Abstract: NQ reservoir (No. 6 reservoir in Guantao Fonnalion ) in Gaoqiaiibei Area of Jidong Oilfield belonged to a connnon heavy oil reservoir flooded will) natural IxHtoni and edge water, to im|)n)ve the development ef

45、fect, it was (letenninetl that C0: flcMMling should be u>e(l in major development areas A 31) geological model which was consistent with reservoir characteri>tics was established, and numerical simulation technology was used for evaluating and selling the gas injection methods, such as continu

46、ous gas injection, alternative gas injection and gas plus foam flooding (lispkicemenL and gas injection parameters were rhosen and optimized Becau浓 of more serious heterogeneity in iwervoir. to prevent earlier gas channeling in the gas injection process, the gas plugs foam for profile control were c

47、hosen before gas injection. The result shows that C02 flooding is well adaptable for the test area. Tlie optimal displacement mode is CO, + foani alternating injection ( volumetric ratio of gas (bam ), the optimal CO, dosage is 0. 055P Il is estinuiiecl that nlien the integral water-eul is 99. 2% in

48、 lhe test area, il> oil recovery should be 2. 29% higher than that of edge water flooding.Key words: natural edge and bottom water drive; ordinarv heavy oil; CO2 + foam altenialing injection; nutnerical simulation128 Performance Evaluation and Field Application of Heavy Oil Viscosity-reducing Bac

49、teriaLE ShihQO. FAN ZhGnzhOngt LIU Qingwang LIU Xuelian 'Fiz AuthorsScluMtl " Peindann Enmcrrin。w.v/ PrtnJeum Uniinily. Daqing 163318. Ileilonfjitin. China )Abstract: Two heavy oil vist'osily-nlucing lxicterial strains such bacillus lichenif(>nni> TY1 and bacillus subtilis TY2 wer

50、e screened Performance of its viscosity reduction effect, wax and gum content« group composition, total hydrocarbon composition evaluated respective、before anil after l)aclerial treatment. The results showed that after bacterial treatment lhe kinematic viscosity of heavy oil dec*reused 46. 81 %

51、 and 60. 13% resiiectivelv for the 2 bacterial strains and(len>itv was reduced also, mo- lecular weight was reduced from 752 3g/mol to 617 5 21. 5g/n)ol, freezing |x>int decreased by 2X2 asphaltene content in group c(»ni|M)sition (lecreaswl by 0. 5% and 1. 3% res,)ectively t saturated hyd

52、rocarbon increased by 4. 4好 and 2. 5% rpsjiec- lively t wax and gum increased by 3.5% and 4. 3% res|Wlively lliP initial fraction point was reduced to 140C and 160"C Field <)|屮licMion in 3 wells indicate that average oil increnHnt of single well is 117t. The *riod of validity is 50 120(1 and

53、 the input-output ratio is more than 1 3.Key words: viscosity-reducing bacteria: viscous oil recovery; performance evaluation; Geld application132 EOR Research on Enhancing Sweep EiTiciency and Displacement Efficiency by Using Non-tilkail Binary Combined FloodingXIAO Chuanmin uihori dtlre: Reseanii

54、Infinite of Exoraiiim & Derrkment.Oilfield. Panjm 124010, U(um-ing. China )Abstract: Non-dlkail bi nan combined flooding was the main development dirwlion of chemical flooding In order to understand the mechanism of bi nan combined displacement. the dynamic characlerislics of swwp pfficiency and

55、 displacement pfficiency of heterogeneous reservoirs were studied through three dimensional physical simulation test, the contribution degree of tlie combined flooding to the enhancing oil recover) was also given quantitatively Study results Jum that the latitude of enhancing oil recover is the high

56、est in medium permeability resen oirs. the low pemieability reservoir is the next and high permeability reservoir is I lie lowest. The analysis on saturation Geld change shows that for the binary combined oil displacement high permeability reservoir is to improve displacement efficiency t and low pe

57、mieability reservoir is to improve sweep efficiency. and medium permeability reservoir is (lominant on improving sweep efficiency and displacement efficiency. The contribution generated from oil displacement to enhance oil recovery is 40% an(l contribution rate from sweep efficiency is 60%. Il provides guidance for formula design of non-alkail binary combined flooding.Key viords: non-tilkail binan combined fkxxling; sweep efficiency: displacement efficiency: physical nxxiel: contribution rate136 Porosity and Permeability Adaptability of Or

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论