带电粒子在组合场运动_第1页
带电粒子在组合场运动_第2页
带电粒子在组合场运动_第3页
带电粒子在组合场运动_第4页
带电粒子在组合场运动_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 带电粒子在组合场中的运动带电粒子在组合场中的运动(第1课时)1第 页,共16页 二中学案 物理(高三二轮)身心健康 厚德崇礼 志向高远 博学多才专题串讲一一、基础知识要记牢带电粒子的“磁偏转”和“电偏转”的比较:匀强磁场中的“磁偏转”匀强电场中的“电偏转”受力特征v垂直于B时,FBqvBv不垂直于B时,FB<qvB,FB为变力,只改变v的方向无论v是否与E垂直,FEqE,FE为恒力运动规律圆周运动(vB) T,r类平抛运动(vE) vxv0,vyt xv0t,y偏转情况若没有磁场边界限制,粒子所能偏转的角度不受限制arctan<,因做类平抛运动,在相等的时间内偏转角度往往不等动能

2、变化动能不变动能发生变化二、方法技巧要用好分析带电粒子在组合场中运动问题的方法:(1)带电粒子依次通过不同场区时,由受力情况确定粒子在不同区域的运动情况。(2)根据区域和运动规律的不同,将粒子运动的过程划分为几个不同的阶段,对不同的阶段选取不同的规律处理。(3)正确地画出粒子的运动轨迹图。三、易错易混要明了(1)要明确带电粒子通过不同场区的交界处时速度大小和方向关系,上一个区域的末速度往往是下一个区域的初速度。(2)带电粒子在电场中的类平抛运动和磁场中的匀速圆周运动,虽然均为曲线运动,但运动规律不同,处理方法也不同。题型一 带电粒子在组合场中的运动 典例1 (2013·山东高考)如图

3、所示,在坐标系xOy的第一、第三象限内存在相同的匀强磁场,磁场方向垂直于xOy平面向里;第四象限内有沿y轴正方向的匀强电场,电场强度大小为E。一带电量为q、质量为m的粒子,自y轴上的P点沿x轴正方向射入第四象限,经x轴上的Q点进入第一象限,随即撤去电场,以后仅保留磁场。已知OPd,OQ2d。不计粒子重力。(1)求粒子过Q点时速度的大小和方向。(2)若磁感应强度的大小为一确定值B0,粒子将以垂直y轴的方向进入第二象限,求B0。(3)若磁感应强度的大小为另一确定值,经过一段时间后粒子将再次经过Q点,且速度与第一次过Q点时相同,求该粒子相邻两次经过Q点所用的时间。跟踪训练1如图所示,在xOy平面直角

4、坐标系的第一象限有射线OA,OA与x轴正方向夹角为30°,OA与y轴所夹区域内有沿y轴负方向的匀强电场,其他区域存在垂直于坐标平面向外的匀强磁场。有一质量为m、电量为q的带正电粒子,从y轴上的P点沿着x轴正方向以初速度v0射入电场,运动一段时间后经过Q点垂直于射线OA进入磁场,经磁场偏转,过y轴正半轴上的M点再次垂直进入匀强电场。已知OPh,不计粒子重力,求:(1)粒子经过Q点时的速度大小;(2)匀强电场电场强度的大小;(3)粒子从Q点运动到M点所用的时间。 跟踪训练2(2012年山东18分)如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定

5、两长为L的平行金属极板MN和PQ,两极板中心各有一小孔、,两极板间电压的变化规律如图乙所示,正反向电压的大小均为,周期为。在时刻将一个质量为、电量为()的粒子由静止释放,粒子在电场力的作用下向右运动,在时刻通过垂直于边界进入右侧磁场区。(不计粒子重力,不考虑极板外的电场)(1)求粒子到达时的速度大小和极板距离(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件。(3)若已保证了粒子未与极板相撞,为使粒子在时刻再次到达,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感强度的大小第三单元 带电粒子在组合场中的运动(第2课时)专题串讲二纵观近七年山东省的物理高考试题,所谓的“压轴题”多聚

6、焦于“磁”。主要考查带电粒子在匀强磁场中的圆周运动,尤其是带电粒子在周期性变化的电场、磁场中的运动,情景复杂、综合性强,对考生的空间想象能力、物理过程和运动规律的综合分析能力以及用数学方法解决物理问题的能力要求较高。而且本部分知识与现代科技密切相关,在近代物理实验中有重大意义。所以,近七年的高考试题中,涉及本考点的命题常以构思新颖、高难度的压轴题形式出现也就不足为奇了。如果掌握了做这类题目的规律,解题还是相对比较容易的。带电粒子沿垂直于磁场方向射入分界线两侧空间不同的两种匀强磁场,往往先后受到大小不同的洛伦兹力作用,使带电粒子的运动轨迹也不同。由于磁场的方向、磁场区域的大小以及带电粒子速度的大

7、小和方向等多种条件的不同而使这类题目富有探究性和开放性。同时这类问题能很好地考查考生的空间想象、推理分析、综合判断能力。近几年的高考试题,常常以加速器、示波管、质谱仪、速度选择器为背景,结合最新的现代科技知识与情景,考查带电粒子在电场中的加速、偏转和在磁场中的偏转。纵观近几年高考,以现代科技为背景命制新情景试题是主要的创新举措之一。这种方式对纯粹式应考而不注重能力的教学模式提出了严厉的警告。考前背题猜题在这种题型面前只会导致很严重的后果。是不是这类问题就束手无策了呢?我们仔细研究后会发现这种高起点的背景中往往隐藏着关键的题眼,如果找到了题眼,则解题的落点还是比较低的。所以在平常的训练中有机的归

8、类进而找出同类问题的共性是培养知识迁移能力的好方法,也是破解此类问题的良策。例如:利用霍尔效应制作的霍尔元件,广泛应用于测量和自动控制等领域。如图是霍尔元件的工作原理示意图,磁感应强度B垂直于霍尔元件的工作面向下,通入图示方向的电流I,C、D两侧面会形成电势差UCD,下列说法中正确的是() A电势差UCD仅与材料有关B若霍尔元件的载流子是自由电子,则电势差UCD<0C仅增大磁感应强度时,电势差UCD变大D在测定地球赤道上方的地磁场强弱时,元件的工作面应保持水平答案:BC 解析:若霍尔元件的载流子是正电荷,由左手定则,正载流子受到由D指向C的洛伦兹力f , C、D两侧面分别积累正、负电荷,

9、产生由C指向D的匀强电场E,很快就有f=qE,则,为载流子定向移动的速度,再有电流的微观表达式,h为霍尔元件的厚度,所以电势差UC除与材料的单位体积的自由电荷数n、单个载流子的电荷量q、霍尔元件的厚度h有关外,还与磁感应强度B、电流I有关,选项A错误;若霍尔元件的载流子是自由电子,由左手定则可知,电子还是向C侧面偏转,则电势差UCD<0,选项B正确;仅增大磁感应强度时,电势差UCD变大,选项C正确;在测定地球赤道上方的地磁场强弱时,元件的工作面应保持竖直且东西放置,选项D错误。方法总结:解决此类题的关键是从元件的工作原理入手,利用物理规律推导出相关结论,再根据结论判断。题型二 带电粒子在

10、周期性变化组合场中的运动典例2 (2010年山东18分)如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d,两侧为相同的匀强磁场,方向垂直纸面向里。一质量为、带电量+q、重力不计的带电粒子,以初速度垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动。已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推。求粒子第一次经过电场的过程中电场力所做的功。粒子第n次经过电场时电场强度的大小。粒子第n次经过电场所用的时间。假设粒子在磁场中运动时,电场区域场强为零。请画出从粒子第一次射入磁场至第三

11、次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标明坐标刻度值)。跟踪训练1. (2008年山东18分)两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。在t=0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力)。若电场强度E0、磁感应强度B0、粒子的比荷均已知,且,两板间距. (1)求粒子在0to时间内的位移大小与极板间距h的比值。 (2)求粒子在极板间做圆周运动的最大半径(用h表示)。 (3)若板间电场强度E随时间的变化仍如图l所示,磁场的

12、变化改为如图3所示,试画出粒子在板间运动的轨迹图(不必写计算过程)。跟踪训练2.(2009年山东18分)如图甲所示,建立Oxy坐标系。两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l。在第一、四象限有磁感应强度为B的匀强磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴向右连续发射质量为m、电量为q、速度相同、重力不计的带电粒子。在03t0时间内两板间加上如图乙所示的电压(不考虑极板边缘的影响)。已知t0时刻进入两板间的带电粒子恰好在t0时刻经极板边缘射入磁场。上述m、q、l、t0、B为已知量。(不考虑粒子间相互影响及返回极板间的情况)(1)求电压U0的大小。(2)求t

13、0时刻进入两板间的带电粒子在磁场做圆周运动的半径。(3)何时进入两板间的带电粒子在磁场中的运动时间最短?求此最短时间。图甲图乙第四单元 带电粒子在组合场中的运动17范志宽2014年3月23日编写 郑来忠审核参考答案 典例1 解析(1)设粒子在电场中运动的时间为t0,加速度的大小为a,粒子的初速度为v0,过Q点时速度的大小为v,沿y轴方向分速度的大小为vy,速度与x轴正方向间的夹角为,由牛顿第二定律得qEma 由运动学公式得dat02 2dv0t0 vyat0 vtan 联立式得v2 45°(2)设粒子做圆周运动的半径为R1,粒子在第一象限的运动轨迹如图所示,O1为圆心,由几何关系可知

14、O1OQ为等腰直角三角形,得R12d 由牛顿第二定律得 qvB0m联立式得 B0 (3)设粒子做圆周运动的半径为R2,由几何分析(粒子运动的轨迹如图所示,O2、O2是粒子做圆周运动的圆心,Q、F、G、H是轨迹与两坐标轴的交点,连接O2、O2,由几何关系知,O2FGO2和O2QHO2均为矩形,进而知FQ、GH均为直径,QFGH也是矩形,又FHGQ,可知QFGH是正方形,QOF为等腰直角三角形)可知,粒子在第一、第三象限的轨迹均为半圆,得2R22d粒子在第二、第四象限的轨迹为长度相等的线段,得FGHQ2R2设粒子相邻两次经过Q点所用的时间为t,则有t联立式得t(2) 跟踪训练1解析(1)粒子做类平

15、抛运动到Q点时,将速度分解如图所示。vQ2v0。(2)vyvQcos 30°v0。粒子从P到Q做类平抛运动,设OQL,则x方向,Lcos 30°v0t, y方向,hLsin 30°vyt,vyat,qEma,联立解得:t,L4h/5,E。(3)由题得,粒子在磁场中偏转的半径rL4h/5,由qvBm,及T2r/v 得T,B。Q到M点,圆心角5/3。 则运动时间tT5T/6。 代入磁感应强度B,得t。跟踪训练2解析:(1)粒子由至的过程中,根据动能定理得 由式得 设粒子的加速度大小为,由牛顿第二定律得 由运动学公式得 联立式得 (2)设磁感应强度大小为B,粒子在磁场中

16、做匀速圆周运动的半径为R,由牛顿第二定律得 要使粒子在磁场中运动时不与极板相撞,须满足 联立式得 (3)设粒子在两边界之间无场区向左匀速运动的过程用时为,有 联立式得 若粒子再次达到时速度恰好为零,粒子回到极板间应做匀减速运动,设匀减速运动的时间为,根据运动学公式得 联立式得 设粒子在磁场中运动的时间为 则 联立式得 设粒子在匀强磁场中做匀速圆周运动的周期为T,由式结合运动学公式得 由题意得 联立式得 典例2 解:(1)设磁场的磁感应强度大小为B,粒子第n次进入磁场时的半径为Rn,速度为,由牛顿第二定律得 由式得 因为所以对于粒子第一次在电场中的运动,由动能定理得 联立式得 (2)粒子第n次进

17、入电场时速度为,出电场时速度为,有由动能定理得 联立式得设粒子第n次在电场中运动的加速度为,由牛顿第二定律得由运动学公式得 联立式得 (4)如图所示。跟踪训练1. 解:(1)设粒子在0t0时间内运动的位移大小为s1 又已知 联立式解得(2)粒子在t02t0时间内只受洛伦兹力作用,且速度与磁场方向垂直,所以粒子做匀速圆周运动。设运动速度大小为v1,轨道半径为R1,周期为T,则 联立式得 又即粒子在t02t0时间内恰好完成一个周期的圆周运动。在2t03t0时间内,粒子做初速度为v1的匀加速直线运动,设位移大小为s2 解得 由于s1+s2h,所以粒子在3t04t0时间内继续做匀速圆周运动,设速度大小

18、为v2,半径为R2 解得 由于s1+s2+R2h,粒子恰好又完成一个周期的圆周运动。在4t05t0时间内,粒子运动到正极板(如图1所示)。因此粒子运动的最大半径。(3)粒子在板间运动的轨迹如图2所示。跟踪训练2.解析:解析:(1)t0时刻进入两板间的带电粒子在电场中做匀变速曲线运动,t0时刻刚好从极板边缘射出,在y轴负方向偏移的距离为l,则有EqEmalat02联立式,解得两板间偏转电压为U0(2)t0时刻进入两板间的带电粒子,前t0时间在电场中偏转,后t0时间两板间没有电场,带电粒子做匀速直线运动。带电粒子沿x轴方向的分速度大小为v0带电粒子离开电场时沿y轴负方向的分速度大小为vya

19、3;t0带电粒子离开电场时的速度大小为v设带电粒子离开电场进入磁场做匀速圆周运动的半径为R,则有qvBm联立式解得R(3)2t0时刻进入两板间的带电粒子在磁场中运动时间最短。带电粒子离开电场时沿y轴正方向的分速度为vyat0设带电粒子离开电场时速度方向与y轴正方向的夹角为,则tan 联立式解得带电粒子在磁场中运动轨迹如图所示,圆弧所对的圆心角2,所求最短时间为tminT带电粒子在磁场中运动的周期为T联立式得tmin答案:(1)(2)(3)2t0 专题验收1.(2011年山东18分)扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆。其简化模型如图、两处的条形均强磁场区边界竖直,相距为L

20、,磁场方向相反且垂直纸面。一质量为m、电量为-q、重力不计的粒子,从靠近平行板电容器MN板处由静止释放,极板间电压为U,粒子经电场加速后平行于纸面射入区,射入时速度与水平方向夹角(1)当区宽度L1=L、磁感应强度大小B1=B0时,粒子从区右边界射出时速度与水平方向夹角也为,求B0及粒子在区运动的时间t0(2)若区宽度L2=L1=L磁感应强度大小B2=B1=B0,求粒子在区的最高点与区的最低点之间的高度差h(3)若L2=L1=L、B1=B0,为使粒子能返回区,求B2应满足的条件(4)若,且已保证了粒子能从区右边界射出。为使粒子从区右边界射出的方向与从区左边界射出的方向总相同,求B1、B2、L1、L2、之间应满足的关系式。2.(2007山东18分)飞行时间质谱仪可以对气体分子进行分析。如图所示,在真空状态下,脉冲阀P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论