5143一元二次方程根与系数的关系题库学生版_第1页
5143一元二次方程根与系数的关系题库学生版_第2页
5143一元二次方程根与系数的关系题库学生版_第3页
5143一元二次方程根与系数的关系题库学生版_第4页
5143一元二次方程根与系数的关系题库学生版_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一元二次方程根及系数的关系中考要求内容根本要求略高要求较高要求一元二次方程了解一元二次方程的概念,会将一元二次方程化为一般形式,并指出各项系数;了解一元二次方程的根的意义能由一元二次方程的概念确定二次项系数中所含字母的取值范围;会由方程的根求方程中待定系数的值一元二次方程的解法理解配方法,会用直接开平方法、配方法、公式法、因式分解法解简单的数字系数的一元二次方程,理解各种解法的依据能选择恰当的方法解一元二次方程;会用方程的根的判别式判别方程根的情况能利用根的判别式说明含有字母系数的一元二次方程根的情况及由方程根的情况确定方程中待定系数的取值范围;会用配方法对代数式做简单的变形;会应用一元二次方

2、程解决简单的实际问题知识点睛一、韦达定理如果的两根是,那么,隐含的条件: 特别地,当一元二次方程的二次项系数为1时,设,是方程的两个根,那么,二、韦达定理的逆定理以两个数,为根的一元二次方程二次项系数为1是一般地,如果有两个数,满足,那么,必定是的两个根三、韦达定理及根的符号关系在的条件下,我们有如下结论:当时,方程的两根必一正一负假设,那么此方程的正根不小于负根的绝对值;假设,那么此方程的正根小于负根的绝对值当时,方程的两根同正或同负假设,那么此方程的两根均为正根;假设,那么此方程的两根均为负根更一般的结论是:假设,是的两根其中,且为实数,当时,一般地:且,且,特殊地:当时,上述就转化为有两

3、异根、两正根、两负根的条件其他有用结论:假设有理系数一元二次方程有一根,那么必有一根,为有理数假设,那么方程必有实数根假设,方程不一定有实数根假设,那么必有一根假设,那么必有一根四、韦达定理的应用方程的一个根,求另一个根以及确定方程参数的值;方程,求关于方程的两根的代数式的值;方程的两根,求作方程;结合根的判别式,讨论根的符号特征;逆用构造一元二次方程辅助解题:当等式具有一样的构造时,就可以把某两个变元看作某个一元二次方程的两根,以便利用韦达定理;利用韦达定理求出一元二次方程中待定系数后,一定要验证方程的一些考试中,往往利用这一点设置陷阱例题精讲一、一元二次方程的一根求另一根【例1】 关于的方

4、程的一个解及方程解一样求的值;求方程的另一个解【例2】 假设方程的一个根为,那么方程的另一个根为,二、确定一元二次方程中字母参数的值或取值范围【例3】 为方程的两根,且,求的值【例4】 关于的方程的两根、满足条件,求的值【例5】 关于的方程的一个根是另一个根的平方,求的值【例6】 设、是方程的两个不同的实根,且,那么的值是【例7】 关于的方程有两个实数根,且,求值【例8】 关于的方程,分别写出以下情形中所满足的条件:方程有两个正实数根;方程两根异号【例9】 关于的方程只有一个正根,求的取值范围【例10】 关于的方程至少有一个正根,求的取值范围【例11】 关于的方程的两根都大于5,求的取值范围【

5、例12】 关于的方程的一个根大于1,另一个根小于1,求的取值范围【例13】 关于x的二次方程的两根一个比1大,另一个比1小,那么m的取值范围是_【例14】 实数为何值时,关于的一元二次方程有两个正根?两根异号,且正根的绝对值较大?一根大于3,一根小于3?【例15】 二次方程的两根都是负数,那么k的取值范围是_【例16】 关于的方程的两根满足,如果关于的另一个方程的两实根都在之间,求的值【例17】 方程的两个实根,且这两根的平方和比这两根之积大21,那么m = _【例18】 是一元二次方程的两个实数根,且,那么m=_【例19】 、是一元二次方程的两个实数根是否存在实数,使成立?假设存在,求出的值

6、;假设不存在,请说明理由求使的值为整数的实数的整数值【例20】 是方程的两实根,是否能适中选取a的值,使得的值等于_【例21】 是方程的两个实数根,是方程的两实数根,且,求的值【例22】 方程的两根的平方和为5,那么m=_【例23】 关于的方程的两个实数根的平方和为23,求的值【例24】 关于的方程的两根平方差等于,求的值【例25】 关于的方程有两个实数根,并且这两个根的平方和比这两个根的积大16,求的值【例26】 ,是有理数,并且方程有一个根是,那么_【例27】 关于的方程和,是否存在这样的值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?假设存在,请求出这样的值;假设不存在,

7、请说明理由【例28】 方程的根是和,方程的根是和其中,、为不同实数,求、的值【例29】 关于的方程的两根倒数之和大于,求的取值范围【例30】 关于的二次方程有实根和,且,确定的取值范围【例31】 、是关于的一元二次方程的两个非零实数根,问:及能否同号?假设能同号请求出相应的的取值范围;假设不能同号,请说明理由【例32】 假设实数使得对于每一个实数,关于、的方程组总有实数解,那么的取值范围是_三、求及一元二次方程两根有关的代数式的值【例33】 方程的两根为、,那么【例34】 、是方程的两个实数根,的值为【例35】 、是方程的两根,求的值【例36】 方程的两根为,求:【例37】 、是方程的两个根,

8、不解方程,求以下代数式的值:【例38】 ,是方程的两个实数根,那么,【例39】 ,是方程的两个实数根,那么【例40】 关于的方程的一个根是2,那么方程的另一根是;【例41】 如果,都是质数,且,求的值【例42】 如果实数满足 ,那么 的值为多少?【例43】 如果实数分别满足,求的值【例44】 ,求的值【例45】 阅读材料:设一元二次方程的两根是、,那么根及系数关系为:,且,求的值【例46】 根据阅读材料所提供的方法,完成下面的解答:,且,求的值【例47】 假设,且有及,那么,【例48】 设实数分别满足,并且,求的值【例49】 设方程的大根为,方程的小根为,那么_【例50】 设、是方程的两根,那

9、么代数式的值是,代数式的值是【例51】 ,是一元二次方程的两个根,求的值【例52】 是不等式组的整数解,、是关于的方程的两个实根,求:的值;的值【例53】 、均为实数,且满足,求的值【例54】 设、为互不相等的实数,且,那么A B C D无法确定四、根据一元二次方程的两根构造一元二次方程【例55】 设的两实数根为,那么为两根的一元二次方程是_【例56】 方程,求作一个一元二次方程,使它的一个根为原方程两个根和的倒数,另一个根为原方程两根差的平方【例57】 求一个一元二次方程,使它的两个根是和【例58】 某二次项系数为的一元二次方程的两个实根为、,且,试求这个一元二次方程【例59】 关于的方程有两个相等的实数根,、是关于的方程 的两个根,求以,为根、二次项系数为一元二次方程五、根及系数关系的其他应用【例60】 当取遍0到5的所有实数时,满足的整数的个数是【例61】 方程的两实根为、,方程的两实根为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论