版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、气体的等温变化、玻意耳定律典型例题【例1】一个气泡从水底升到水面时,它的体积增大为原来的 3 倍,设水的密度为P =1X 103kg/m,大气压强p=1.01 x 105Pa,水底 与水面的温度差不计,求水的深度。取 g=10n/ s2。【分析】气泡在水底时,泡内气体的压强等于水面上大气压与水 的静压强之和。气泡升到水面上时,泡内气体的压强减小为与大气压 相等,因此其体积增大。由于水底与水面温度相同,泡内气体经历的 是一个等温变化过程,故可用玻意耳定律计算。【解答】设气泡在水底时的体积为VI、压强为:pi=p+p gh气泡升到水面时的体积为 V2,则V2=3V,压强为p2=pc由玻意耳定律pi
2、V仁pV2,即(po+p gh) V仁p 3V1得水深2X 1.01X 105m - 202 m【例2】如图1所示,圆柱形气缸活塞的横截面积为 S,下表面与 水平面的夹角为a,重量为 G当大气压为po,为了使活塞下方密闭 气体的体积减速为原来的1/2,必须在活塞上放置重量为多少的一个 重物(气缸壁与活塞间的摩擦不计)【误解】活塞下方气体原来的压强Scos aG cos CL设所加重物重为G ,则活塞下方气体的压强变为(G + Gf)cosCl丹一內J心2气体体积减为原的1/2,则p=2pcos0-【正确解答】据图2,设活塞下方气体原来的压强为 pi,由活塞的平衡条件得* cos a国2同理,加
3、上重物G后,活塞下方的气体压强变为气体作等温变化,根据玻意耳定律:VP1V=P2 * V得 p2=2piG =p)S+G【错因分析与解题指导】【误解】从压强角度解题本来也是可以的,但將活塞产生的压强算成G发生了错误,这个压强值应该是G/S.为避cos a免发生以上关于压强计算的错误,相似类型的题目从力的平衡入手解 题比较好。在分析受力时必须注意由气体压强产生的气体压力应该垂 直于接触面,气体压强乘上接触面积即为气体压力,情况就如【正确 解答】所示。【例3】一根两端开口、粗细均匀的细玻璃管,长 L=30cm竖直插入水银槽中深ho=1Ocm处,用手指按住上端,轻轻提出水银槽,并 缓缓倒转,则此时管
4、内封闭空气柱多长?已知大气压 R=75cmHg【分析】插入水银槽中按住上端后,管内封闭了一定质量气体,空气柱长L仁L-ho=2Ocm 压强pi=po=75cmHg轻轻提出水银槽直立在空气中时,有一部分水银会流出,被封闭的空气柱长度和压强都会发 生变化。设管中水银柱长h,被封闭气体柱长为L2=L-h。倒转后,水 银柱长度仍为h不变,被圭寸闭气体柱长度和压强又发生了变化。设被 封闭气体柱长L3所以,管内封闭气体经历了三个状态。由于“轻轻提出”、“缓缓倒转”,意味着都可认为温度不变,因此可由玻意耳定律列式求解。【解】根据上面的分析,画出示意图(图 a b、c)。气体所经历的三个状态的状态参量如下表所
5、示:匡薩(ctiiHg )U积(cm3 J(*)PiG耳广L臣0=95= ( 30-h J S(c)p-75+h由于整个过程中气体的温度不变,由玻意耳定律:pVi=p2V2=pV75 X 20S= (75-h )( 30-h) S= (75+h) L3S由前两式得: h2-105h+750=0取合理解h=7.7cm,代入得75X201500=TCfll = 75777Cni = 131ctU【说明】必须注意题中隐含的状态(b),如果遗漏了这一点,将 无法正确求解。【例4】容器A的容积是10L,用一根带阀门的细管,与容器 B 相连。开始时阀门关闭,A内充有10atm的空气,B是真空。后打开 阀门
6、把A中空气放一些到B中去,当A内压强降到4atm时,把阀门关 闭,这时B内压强是3atm。求容器B的容积。假设整个过程中温度不 变。【分析】对流入容器B的这部分空气,它后来的状态为压强 p B=3atm体积VB (容器B的容积)。为了找出这部分空气的初态,可设想让容器 A中的空气作等温膨 胀,它的压强从10atm降为4atm时逸出容器A的空气便是进入B内的 空气,于是即可确定初态。【解答】先以容器A中空气为研究对象,它们等温膨胀前后的状 态参量为:V=10L, pA=10atm;V a= ?, p A=4atm。由玻意耳定律p aVA=P aV A,得如图1所示10tx10L-25L图1再以逸
7、出容器A的这些空气为研究对象,它作等温变化前后的状态为:pi=p A=4atm,V仁Va-Va=15Lp仁3atm,V i=VB同理由玻意耳定律piV仁piVB,得Pl 4 = -15L = 20LB Pt 13所以容器B的容积是20L。【说明】本题中研究对象的选取至关重要,可以有多种设想。例如,可先以后来充满容器 A的气体为研究对象(见图2)假设它原来在容器A中占的体积为Vx,这部分气体等温变化前后的状态为:團2变化前:压强pA=10atm、体积Vx,变化后:压强p A=4atm体积V x=V=10L。由 PaVx=p aV xIJ得兀-X 10L - 4L Pa1 由此可见,进入B中的气体
8、原来在A内占的体积为VA-Vx=( 10-4)L=6L。再以这部分气体为研究对象,它在等温变化前后的状态为:变化前:压强pi=10atm,体积V1=6L,变化后:压强p2=3atm,体积V2=VB由玻意耳定律得容器B的容积为:V宜V!-X6L-20LPi决定气体状态的参量有温度、体积、压强三个物理量,为了研究这三者之间的联系,可以先保持其中一个量不变,研究另外两个量之 间的关系,然后再综合起来。这是一个重要的研究方法,关于气体性 质的研究也正是按照这个思路进行的。【例5】一容积为32L的氧气瓶充气后压强为13OON/cm2。按规定 当使用到压强降为100N/cm时,就要重新充气。某厂每天要用
9、400L 氧气(在1atm下),一瓶氧气能用多少天(1atm=10N/crfi)?设使用 过程中温度不变。【分析 】这里的研究对象是瓶中的氧气。由于它原有的压强(1300N/cm),使用后的压强(100N/cm)、工厂应用时的压强(10N/cm)都不同,为了确定使用的天数,可把瓶中原有氧气和后来的氧气都转化为1atm,然后根据每天的耗氧量即可算出天数。【解】 作出示意图如图 1 所示。根据玻意耳定律,由piV仁p 1V 1,pV2=p 2V 2得PL=15QCir/cin3Y1-32L罟皿p2 =lOOIT/cmV2-32L_毎夭耗氧量(J Po=10S/cm 2Vn=400L100X32L=
10、320L所以可用天数为:n4160-320400-96【说明】根据上面的解题思路,也可以作其他设想。如使后来留 在瓶中的氧气和工厂每天耗用的氧气都变成 1300N/C祁的压强状态 下,或使原来瓶中的氧气和工厂每天耗用的氧气都变成100N/CR2的压强状态下,统一了压强后,就可由使用前后的体积变化算出使用天数。上面解出的结果,如果先用文字代入并注意到 p i=p 2=p。,即 得v-码n_ Vo v0 - P 凤或pV仁pV2+npVO这就是说,在等温变化过程中,当把一定质量的气体分成两部分(或几部分),变化前后pV值之和保持不变(图2)。这个结果,实质上就是质量守恒在等温过程中的具体体现。在气
11、体的分装和混合等 问题中很有用【例6】如图所示,容器A的容积为VA=1OOL抽气机B的最大容 积为VB=25L当活塞向上提时,阀门a打开,阀门b关闭;当活塞向 下压时,阀门a关闭,阀门b打开。若抽气机每分钟完成4次抽气动 作,求抽气机工作多长时间,才能使容器 A中气体的压强由70cmhg 下降到7.5cmHg (设抽气过程中容器内气体的温度不变)?【误解】设容器中气体等温膨胀至体积 V2,压强由70cmHgF降到7.5cmHg根据pAVA=pV2v v片畫怖w I- -%_70(?5 1)100VEVE29 (决)所需时间34t = = 8 5 (nun)【正确解答】设抽气1次后A中气体压强下
12、降到p,根据PaVA=p( VA+VB得第二次抽气后,压强为P2,则XPa同理,第三次抽气后,抽气n次后,气体压强代入数据得:n=10 (次)所需时间=t = = 2 5 (min)4【错因分析与解题指导】【误解】的原因是不了解抽气机的工作过程,认为每次抽入抽气机的气体压强均为 7.5cmH事实上,每次 抽气过程中被抽气体体积都是 VB但压强是逐步减小的,只是最后一 次抽气时,压强才降低至7.5cmH因此,必须逐次对抽气过程列出 玻意耳定律公式,再利用数学归纳法进行求解。【例7】有开口向上竖直安放的玻璃管,管中在长 h的水银柱下方封闭着一段长L的空气柱。当玻璃管以加速度 a向上作匀加速运动时,
13、空气柱的长度将变为多少?已知当天大气压为重力加速度为go【误解】空气柱原来的压强为pi=po+h当玻璃管向上作匀加速动时,空气柱的压强为速运动有p2S-pS-mg=ma即 p2=po+ p( g+a) h考虑空气的状态变化有pLS=pL Sp01/ 三* T【正确解答】空气柱原来的压强为pi=po+ p gh当玻璃管向上作匀加速运动时,空气柱的压强为po,水银密度为p.P2,对水银柱的加p2,由水银柱加速度运动得p2S-pS-mg=map2=po+ p( g+a) h气体作等温变化pLS=pL S解得V-【错因分析与解题指导】 本题是动力学和气体状态变化结合的综 合题。由于牛顿第二定律公式要求
14、使用国际单位,所以压强的单位是 “Pa”。【误解】中pi=po+h,由动力学方程解得p2=p+p( g+a) h, 在压强的表示上,h和p(g+a) h显然不一致,前者以cmHg作单位是 错误的。所以在解答此类习题时,要特别注意统一单位,高为h的水银柱的压强表达为p=p gh是解题中一个要点。例8如图所示,内径均匀的U型玻璃管竖直放置,截面积为5cm, 管右侧上端封闭,左侧上端开口,内有用细线栓住的活塞。两管中分 别封入L=11cm的空气柱A和B,活塞上、下气体压强相等为 76cm水 银柱产生的压强,这时两管内的水银面的高度差h=6cm现将活塞用细线缓慢地向上拉,使两管内水银面相平。求(1)活
15、塞向上移动的距离是多少?(2)需用多大拉力才能使活塞静止在这个位置上?分析两部分气体是靠压强来联系U型玻璃管要注意水银面的变化,一端若下降 xcm另一端必上升xcm,两液面高度差为2xcm,由此可知,两液面相平,B液面下降h/2,A管液面上升h/2在此基础上考虑活塞移动的距离解答(1)对于B段气体8=76-6=70( cmHg p B2=py=11S(cm) V B2=(11+3)S(cmh)根据玻意耳定律PBM=PB2VB27DX11S-14S 芳伽晦对于A段气体pAi=76(cmHg) pA2=8=55(cmHg)VAi=11s(cmb) V A2=Ls(cm 3)根据玻意耳定律PAiVi
16、=pA2V2vPm VaiX H5 p55r A3匚I立2伽)对于活塞的移动距离:h=L+3-L=15.2+3-11=7.2(cm)(2)对于活塞平衡,可知f+2s=rsF=RS-PS说明U型管粗细相同时,一侧水银面下降hem另一侧水银面就要上升hem,两部分液面高度差变化于2hem,若管子粗细不同,应该从体积的变化来考虑,就用几何关系解决物理问题是常用的方法。例9如图所示,在水平放置的容器中,有一静止的活塞把容器 分隔成左、右两部分,左侧的容积是 1.5L,存有空气;右侧的容积是 3L,存有氧气,大气压强是76cmHg先打开阀门K,当与容器中空气 相连的U形压强计中左、右水银面的高度差减为
17、19cm时,关闭阀K 求后来氧气的质量与原来氧气的质量之比(系统的温度不变,压强计 的容积以及摩擦不计)。分析对于密圭寸的一定质量空气初态末态p1=76+38(cmH)V;=7把原来容器中的氧气做为研究对象初态末态p2=7 6+38 (cp 严 6+19沁也)Va=3LV;=7容器外(放走的)氧气体积厶V V=(Vi+V2)-(V 1+V)在后来状态下,氧气密度相同解答对于空气(温度不变)对于氧气(温度不变)做为研究对象容器外的氧气(假设仍处于末态)的体积v=(% 小;)-GV也)-(18 + 3.6)+=0.9(L)后来容器申氧气与原来氧气质量之出可;V3.6 - 0.93石=V;=35=
18、4说明:理想气体的状态方程,是对一定量的气体而言,当它的 状态发生变化时,状态参量之间的变化规律。遵守气态方程。而两部 分气体时,要各自分别应用状态方程。再通过力学条件,找到这两部 分气之间压强或体积的关系。本题容器内的氧气是属于变质量问题,也可以把它假想成质量不 变来处理。狀态1状态2气体单位体积的分子数相等,质量和体积成正比,可求得剩余质 量(或放出的质量)与原质量之间的比例关系求物体的质量可以用 m=p V某个状态时的密度和该状态时体积的乘积,而气态方程也可以写做密度形式常用此式求某一状态时气体单位体积的分子数,然后再求气体的 质量。例10 一横截面积为S的气缸水平放置,固定不动,气缸壁是导 热的,两个活塞A和B将气缸分隔为1、2两气室,达到平衡时1、2 两气室体积之比为3 : 2,如图所示,在室温不变的条件下,缓慢推动 活塞A,使之向右移动一段距离d,求活塞B向右移动的距离,不计活 塞与气缸壁之间的摩擦。分析气缸水平放置,不计活塞与气缸壁的摩
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于微服务的分布式农产品销售与溯源管理系统实现
- 基于熵值法的A公司财务绩效研究
- 双功能豌豆蛋白水解物促进胰岛素释放机制研究及GLP-1促泌肽与DPP-4抑制肽结构鉴定
- 2025年度工程机械铲车租赁合作协议电子版
- 2025年度特色火锅店门面房租赁合作协议
- 部编人教版小学数学试卷
- 2025年度临时工聘用与团队建设协议
- 昌乐二模中考数学试卷
- 2025年度港口集装箱装卸服务合作协议
- 二零二五年度房贷服务合同
- 无人化农场项目可行性研究报告
- 《如何存款最合算》课件
- 社区团支部工作计划
- 拖欠工程款上访信范文
- 2024届上海市金山区高三下学期二模英语试题(原卷版)
- 《wifi协议文库》课件
- 《好东西》:女作者电影的话语建构与乌托邦想象
- 一年级下册数学口算题卡打印
- 2024年中科院心理咨询师新教材各单元考试题库大全-下(多选题部分)
- 真人cs基于信号发射的激光武器设计
- 2024年国信证券招聘笔试参考题库附带答案详解
评论
0/150
提交评论