整式的乘法与因式分解压轴题解析学习资料_第1页
整式的乘法与因式分解压轴题解析学习资料_第2页
整式的乘法与因式分解压轴题解析学习资料_第3页
整式的乘法与因式分解压轴题解析学习资料_第4页
整式的乘法与因式分解压轴题解析学习资料_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精品文档精品文档整式的乘法与因式分解1单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式3 a 2 b 2× 2abc=( 3× 2)×(a2 b 2 × abc) =6 a 3 b 3c2单项式与多项式的乘法法则:a(b+c+d)= ab + ac + ad单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加3多项式与多项式的乘法法则:( a+b)(c+d)= ac + ad + bc + bd多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每

2、一项相乘,再把所得的积相加4乘法公式:完全平方公式:( a b) 2 a2 2ab b2( a b) 2 a2 2ab b2语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2 倍平方差公式:( a b) ( a b)a2 b2语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差5因式分解(难点)因式分解的定义:把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解一、掌握因式分解的定义应注意以下几点:( 1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;( 2)因式分解必须是恒等变形;( 3)因式分

3、解必须分解到每个因式都不能分解为止因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式二、熟练掌握因式分解的常用方法1、提公因式法( 1)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:系数一各项系数的最大公约数;字母各项含有的相同字母;指数相同字母的最低次数;( 2)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项( 3)注意点:提取公因式后各因式应该是最简形式,即分解到“底”;如果多项式的第一项的系数是负的,一般要提出“”号,使

4、括号内的第一项的系数是正的2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;平方差公式:a 2 b2 ( a b) ( a b)完全平方公式:a22abb2(ab)2a22abb2(ab)2【典例解析】例题1: 数学家发明了一个魔术盒,当任意数对(a, b)进入其中时,会得到一个新的数:(a1 ) (b2)现将数对(m,1)放入其中,得到数n,再将数对(n,m)放入其中后,最后得到的数是 m2+2m (结果要化简)【考点】整式的混合运算【分析】根据题意的新定义列出关系式,计算即可得到结果【解答】解:根据题意得:(m 1)(1 2) =n,即n=1 m,2则将数对(n,m)代入得

5、:(n1)(m2)=(1m1)(m2)=m+2m故答案为:m2+2m【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键例题2: 乘法公式的探究与应用:1 )如图甲,边长为a 的大正方形中有一个边长为b 的小正方形,请你写出阴影部分面积是a2 b2 (写成两数平方差的形式)2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是a+b ,宽是a b ,面积是( a+b) ( a b) (写成多项式乘法的形式)3)比较甲乙两图阴影部分的面积,可以得到公式(两个)公式1:( a+b) ( a b) =a2 b2公式2:a2 b2=( a+b) ( a b)=a2 b2;10

6、.3 × 9.7( 1)中的面积=大正方形的面积小正方形的面积a+b) ( a b) ;2)中的长方形,宽为a b,长为a+b,面积=长×宽=(3)中的答案可以由(1 ) 、 ( 2)得到(a+b) ( a b) =a2 b2;反过来也成立;4)把10.3 × 9.7 写成( 10+0.3) ( 10 0.3 ) ,利用公式求解即可( 1)阴影部分的面积=大正方形的面积小正方形的面积=a2 b2;2)长方形的宽为ab,长为a+b,面积=长×宽=(a+b)(ab) ;故答案为:a+b, a b, ( a+b) ( a b) ;3)由(1) 、 ( 2)得到

7、,公式1: ( a+b) ( a b) =a2 b2;公式2: a2 b2 =( a+b) ( a b)故答案为:(a+b)(ab),a2b2=(a+b)(ab) ;4) 10.3 × 9.7= ( 10+0.3 ) ( 10 0.3) =102 0.3 2 =100 0.09 =99.91 例题3: 如图,将一边长为a 的正方形(最中间的小正方形)与四块边长为b 的正方形(其b> a)拼接在一起,则四边形ABCD的面积为(考点:勾股定理2+a2 C ( b+a) 2 D a 2+2ab分析:先求出AE 即 DE的长,再根据三角形的面积公式求解即可解答:解:DE=b a, AE

8、=b,2S 四边形ABCD=4S ADE+a =4××(b a) ?b =b2 +( b a) 2故选:A点评 : 本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键例题 4: 如图 1,我们在2017 年 1 月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”) 该十字星的十字差为10× 12 4× 18=48,再选择其他位置的十字星,可以发现“十字差”仍为48( 1 )如图2,将正整数依次填入5 列的长方形数表中,探究不

9、同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为 24 ( 2) 若将正整数依次填入k 列的长方形数表中( k 3) , 继续前面的探究,可以发现相应“十字差”为与列数 k 有关的定值,请用k 表示出这个定值,并证明你的结论( 3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”,若某个十字星中心的数在第32 行, 且其相应的“十字差”为2017, 则这个十字星中心的数为975(直接写出结果)【考点】规律型:数字的变化类【分析】 ( 1)根据题意求出相应的“十字差”,即可确定出所求定值;( 2)定值为k2 1=( k+1 ) ( k 1 ) ,理由

10、为:设十字星中心的数为x,表示出十字星左右两数,上下两数,进而表示出十字差,化简即可得证;( 3)设正中间的数为a,则上下两个数为a 62, a+64,左右两个数为a 1, a+1,根据相应的“十字差”为 2017 求出 a 的值即可【解答】解:( 1)根据题意得:6× 8 2× 12=48 24=24;故答案为:24;( 2)定值为k2 1=( k+1 ) ( k 1 ) ;证明: 设十字星中心的数为x, 则十字星左右两数分别为x 1, x+1, 上下两数分别为x k,x+k( k 3) ,十字差为(x 1) ( x+1)(x k) ( x+k) =x2 1 x2+k2=

11、k2 1 ,故这个定值为k2 1=( k+1 ) ( k 1) ;( 3)设正中间的数为a,则上下两个数为a 62, a+64,左右两个数为a 1, a+1,根据题意得:( a 1) ( a+1 )(a 62) ( a+64) =2017,解得:a=975故答案为:975【跟踪训练】1. 利用 1 个 a× a 的正方形,1 个 b × b 的正方形和2 个 a × b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式a2+2ab+b2=( a+b) 2 2. 如图,有正方形卡片A 类、 B 类和长方形卡片C 类各若干张,如果用这三类卡片拼一个长为2a

12、+b、宽为a+2b 的大长方形,通过计算说明三类卡片各需多少张?3. 已知a、 b、 c 是ABC的三条边,且满足a2+bc=b2+ac,则ABC是()A锐角三角形B钝角三角形C等腰三角形D等边三角形4. 在日历上,我们发现某些数会满足一定的規律,比如 2016 年 1 月份的日历,我们设计这样的算法:任意选择其中的2 × 2 方框,将方框中4 个位置上的数先平方,然后交叉求和,再相减 请你按照这个算法完成下列计算,并回答以下问题2016 年 1 月份的日历日一二三四五六12345678910111213141516171819202122232425262728293031( 12

13、+92)(22+82) = 14 ,= 14,自己任选一个有4 个数的方框进行计算 14( 2)通过计算你发现什么规律,并说明理由5. 已知(x+y) 2=25, xy= ,求x y 的值6. 已知,则( a+b) 2(a b) 2的值为1 7. 一个多项式除以2m得 1 m+m2,这个多项式为2m 2m2+2m3 6x2+5x6 ÷(2x+3) =(3x2)小玉和小丽做游戏,两人各报一个整式,小玉报一个被除式,小丽报一个除式,要求商必须是3ab 若小玉报的是3a2bab2,则小丽报的是a b ; 若小丽报的是9a2b,则小玉报的整式是27a3b2 如图甲、乙两个农民共有4 块地,今

14、年他们决定共同投资搞饲养业,为此他们准备将这4块地换成宽为(a+b) cm的地,为了使所换到的面积与原来地的总面积相等,交换之后的地的长应为a+c m8. 阅读下面的解答过程,求y2 +4y+8 的最小值解:y2+4y+8=y2+4y+4+4=(y+2)2+44,(y+2)20即(y+2)2 的最小值为0, y2+4y+8 的最小值为4仿照上面的解答过程,求m2+m+4的最小值和4 x2+2x 的最大值参考答案:9. 利用 1 个 a× a 的正方形,1 个 b × b 的正方形和2 个 a × b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式a2

15、+2ab+b2=( a+b) 2 【考点】因式分解-运用公式法【分析】根据提示可知1 个 a× a 的正方形,1 个 b × b 的正方形和2 个 a × b 的矩形可拼成一个正方形,利用面积和列出等式即可求解【解答】解:两个正方形的面积分别为a2, b2,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b) 2,所以a2+2ab+b2 =( a+b) 2【点评】 本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系10. 如图,有正方形卡片A 类、 B 类和长方形卡片C 类各若干张,如果用这三类卡片拼一个长为2a+b、

16、宽为a+2b 的大长方形,通过计算说明三类卡片各需多少张?【考点】多项式乘多项式【分析】根据长乘以宽,表示出大长方形的面积,即可确定出三类卡片的张数【解答】解:(2a+b) ( a+2b) =2a2+4ab+ab+2b2=2a2+5ab+2b2,需要 A类卡片 2 张, B类卡片 2 张,C类卡片5张11. 已知a、 b、 c 是ABC的三条边,且满足a2+bc=b2+ac,则ABC是()A锐角三角形B钝角三角形C等腰三角形D等边三角形【考点】因式分解的应用【分析】 已知等式左边分解因式后,利用两数相乘积为0 两因式中至少有一个为0 得到a=b,即可确定出三角形形状【解答】解:已知等式变形得:

17、(a+b)( a b)c(ab)=0,即(a b) (a+bc)=0, a+b c 0,a b=0,即a=b,则ABC为等腰三角形故选:C12. 在日历上,我们发现某些数会满足一定的規律,比如 2016 年 1 月份的日历,我们设计这样的算法:任意选择其中的2 × 2 方框,将方框中4 个位置上的数先平方,然后交叉求和, 再相减 请你按照这个算法完成下列计算,并回答以下问题2016 年 1 月份的日历日一二三四五六12345678910111213141516171819202122232425262728293031( 12+92)(22+82) = 14 ,= 14,自己任选一个

18、有4 个数的方框进行计1 )计算:算 142)通过计算你发现什么规律,并说明理由( 1)先算乘法,再合并即可;2)设最小的数字为n,则其余三个分别为n+8, n+1 , n+7,根据题意得出算式n 2+( n+8) 2 ( n+1 ) 2+( n+7) 2 ,求出即可( 1) ( 12+92)(22+82) =1+81 4 64=14,=100+324 121 289=14,32+112)(42+102) =9+121 16 100=14,故答案为:14;2)计算结果等于14,理由是:设最小的数字为n,则其余三个分别为n+8, n+1, n+7,所以 n 2+( n+8) 2 ( n+1) 2

19、+( n+7) 2 =n2+n2+16n+64 n2 2n 1 n2 14n 49=1413. 已知(x+y) 2=25, xy= ,求x y 的值【考点】完全平方公式x+y) 2=x2+2xy+y2,25=x2+y2+ ,x2+y2=x y) 2=x2 2xy+y 2,x y) 2=16x y=± 414. 已知,则( a+b) 2(a b) 2的值为1 考点:因式分解- 运用公式法分析:首先利用完全平方公式展开进而合并同类项,再将已知代入求出即可解答:解:(a+b) 2(a b) 2=( a2+2ab+b2)(a2 2ab+b2)=4ab,将,代入上式可得:原式=4ab=4

20、15;×=1 故答案为:1 点评:此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键15. 一个多项式除以2m得 1 m+m2,这个多项式为2m 2m2+2m3 6x2+5x6 ÷(2x+3) =(3x2)小玉和小丽做游戏,两人各报一个整式,小玉报一个被除式,小丽报一个除式,要求商必须是3ab 若小玉报的是3a2bab2,则小丽报的是ab ; 若小丽报的是9a2b,则小玉报的整式是27a3b2 如图甲、乙两个农民共有4 块地,今年他们决定共同投资搞饲养业,为此他们准备将这4块地换成宽为(a+b) cm的地,为了使所换到的面积与原来地的总面积相等,交换之后的地的长应为a+c m考点:整式的混合运算分析:利用2m乘 1 m+m2计算即可;把除式和商相乘即可;根据被除式÷商=除式,被除式=除式×商列式计算即可;利用 4 块土地换成一块地后的面积与原来4 块地的总面积相等,而原来4 块地的总面积=a2+bc+ac+ab, 得到4 块土地换成一块地后面积为( a2+bc+ac+ab) 米, 又此块地的宽为( a+b)米,根据矩形的面积公式得到此块地的长=( a2+bc+ac+ab )÷(a+b) ,把被除式分解后再进行除法运算即可得到结论解答:解: 2m( 1 m+m2) =2m 2m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论