版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、转化 可分离变量微分方程 第二节解分离变量方程解分离变量方程 xxfyygd)(d)(可分离变量方程可分离变量方程 )()(dd21yfxfxy0 )(d )(11xNxxMyyNyMd)( )(22分离变量方程的解法分离变量方程的解法:xxfyygd)(d)(设 y (x) 是方程的解, xxfxxxgd)(d)()(两边积分, 得 yygd)(xxfd)(CxFyG)()(则有恒等式 )(yG)(xF当G(y) 与F(x) 可微且 G(y) g(y)0 时, 说明由确定的隐函数 y(x) 是的解. 则有称为方程的隐式通解, 或通积分.同样,当F(x)= f (x)0 时,上述过程可逆,由确
2、定的隐函数 x(y) 也是的解. 例例1. 求微分方程求微分方程yxxy23dd的通解.解解: 分离变量得分离变量得xxyyd3d2两边积分xxyyd3d2得13lnCxyCxylnln3即13Cxey31xCee3xeCy 1CeC令( C 为任意常数 )或说明说明: 在求解过程中在求解过程中每一步不一定是同解每一步不一定是同解变形变形, 因此可能增、减解.( 此式含分离变量时丢失的解 y = 0 )例例2. 解初值问题解初值问题0d)1(d2yxxyx解解: 分离变量得分离变量得xxxyyd1d2两边积分得Cxyln11lnln2即Cxy12由初始条件得 C = 1,112xy( C 为任
3、意常数 )故所求特解为 1)0(y例例3. 求下述微分方程的通解求下述微分方程的通解:) 1(sin2yxy解解: 令令 , 1yxu那么yu1故有uu2sin1即xuuddsec2Cxutan解得Cxyx) 1tan( C 为任意常数 )所求通解:练习练习:.dd的通解求方程yxexy解法解法 1 分离变量分离变量xeyexyddCeexy即01)(yxeCe( C 0 )解法解法 2, yxu令yu1则故有ueu1积分Cxeuu1dCxeuu)1 (ln( C 为任意常数 )所求通解:Cyeyx)1(lnueeeuuud1)1 (例例4. 子的含量 M 成正比,0M求在衰变过程中铀含量 M
4、(t) 随时间 t 的变化规律. 解解: 根据题意根据题意, 有有)0(ddMtM00MMt(初始条件)对方程分离变量, MMd,lnlnCtM得即teCM利用初始条件, 得0MC 故所求铀的变化规律为.0teMMM0Mto然后积分:td)(知 t = 0 时铀的含量为已知放射性元素铀的衰变速度与当时未衰变原例例5.成正比,求解解: 根据牛顿第二定律列方程根据牛顿第二定律列方程tvmdd00tv初始条件为对方程分离变量,mtvkmgvdd然后积分 :得Cmtvkgmk)(ln1)0( vkgm此处利用初始条件, 得)(ln1gmkC代入上式后化简, 得特解并设降落伞离开跳伞塔时( t = 0
5、) 速度为0,)1 (tmkekgmvmgvk设降落伞从跳伞塔下落后所受空气阻力与速度 降落伞下落速度与时间的函数关系. kmgv t 足够大时内容小结内容小结1. 微分方程的概念微分方程;定解条件;2. 可分离变量方程的求解方法:说明说明: 通解不一定是方程的全部解通解不一定是方程的全部解 .0)(yyx有解后者是通解 , 但不包含前一个解 .例如, 方程分离变量后积分; 根据定解条件定常数 .解; 阶;通解; 特解 y = x 及 y = C 找出事物的共性及可贯穿于全过程的规律列方程.常用的方法常用的方法:1) 根据几何关系列方程2) 根据物理规律列方程 ( 如: 例4 , 例 5 )(2) 利用反映事物个性的特殊状态确定定解条件.(3) 求通解, 并根据定解条件确定特解. 3. 解微分方程应用题的方法和步骤思考与练习思考与练习 求下列方程的通解 :0d)(d)() 1(22yyyxxyxx提示提示:xxxyyyd1d122)sin()sin()2(yxyxy(1) 分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版企业人力资源总监职责与权益合同3篇
- 武汉体育学院《地下水数值模拟基础与应用》2023-2024学年第一学期期末试卷
- 武汉传媒学院《现代分析检验技术应用》2023-2024学年第一学期期末试卷
- 二零二五年度建筑工地安全文明施工评估合同3篇
- 二零二五版儿童乐园开业庆典承包合同范本3篇
- 2024陶瓷厂劳务外派工作合同模板3篇
- 2025版大型工程船舶租赁合同6篇
- 威海职业学院《数值计算与仿真》2023-2024学年第一学期期末试卷
- 二零二五年度酒店会议场地预订与策划服务合同3篇
- 天津城市职业学院《工程光学》2023-2024学年第一学期期末试卷
- 南充化工码头管网施工方案(初稿)
- 2023年消防接警员岗位理论知识考试参考题库(浓缩500题)
- GB/T 30285-2013信息安全技术灾难恢复中心建设与运维管理规范
- 鲁滨逊漂流记阅读任务单
- 第一章 运营管理概论1
- 《创意绘画在小学美术教育中的应用(论文)6000字》
- 主体结构验收汇报材料T图文并茂
- 管理学原理(南大马工程)
- 过一个有意义的寒假课件
- 施工现场装配式集装箱活动板房验收表
- 电力业扩工程竣工验收单
评论
0/150
提交评论