《数据结构课程设计》最短路径问题实验报告_第1页
《数据结构课程设计》最短路径问题实验报告_第2页
《数据结构课程设计》最短路径问题实验报告_第3页
《数据结构课程设计》最短路径问题实验报告_第4页
《数据结构课程设计》最短路径问题实验报告_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、目 录 一、概述1二、系统分析1三、概要设计2四、详细设计5567五、运行与测试8参考文献11附录12交通咨询系统设计最短路径问题一、概述 在交通网络日益兴旺的今天,针对人们关心的各种问题,利用计算机建立一个交通咨询系统。在系统中采用图来构造各个城市之间的联系,图中顶点表示城市,边表示各个城市之间的交通关系,所带权值为两个城市间的消耗。这个交通咨询系统可以答复旅客提出的各种问题,例如:如何选择一条路径使得从A城到B城途中中转次数最少;如何选择一条路径使得从A城到B城里程最短;如何选择一条路径使得从A城到B城花费最低等等的一系列问题。二、系统分析设计一个交通咨询系统,能咨询从任何一个城市顶点到另

2、一城市顶点之间的最短路径(里程)、最低花费或是最少时间等问题。对于不同的咨询要求,可输入城市间的路程、所需时间或是所需费用等信息。针对最短路径问题,在本系统中采用图的相关知识,以解决在实际情况中的最短路径问题,本系统中包括了建立图的存储结构、单源最短问题、对任意一对顶点间最短路径问题三个问题,这对以上几个问题采用了迪杰斯特拉算法和弗洛伊德算法。并未本系统设置一人性化的系统提示菜单,方便使用者的使用。三、概要设计可以将该系统大致分为三个局部: 1 建立交通网络图的存储结构;2 解决单源最短路径问题;3 实现两个城市顶点之间的最短路径问题。交通咨询系统迪杰斯特拉算法单源最短路径费洛依德算法任意顶点

3、对间最短路径建立图的存储结构义迪杰斯特拉算法流图:弗洛伊德算法流图:四、详细设计 建立图的存储结构定义交通图的存储结构。邻接矩阵是表示图形中顶点之间相邻关系的矩阵。设G=(V,E)是具有n个顶点的图,那么G的邻接矩阵是具有如下定义的n阶方阵。注:一个图的邻接矩阵表示是唯一的!其表示需要用一个二维数组存储顶点之间相邻关系的邻接矩阵并且还需要用一个具有n个元素的一维数组来存储顶点信息下标为i的元素存储顶点的信息。邻接矩阵的存储结构:#define MVNum 100 /最大顶点数typedef struct VertexType vexsMVNum;/顶点数组,类型假定为char型 Adjmatr

4、ix arcsMVNumMVNum;/邻接矩阵,假定为int型MGraph;注:由于有向图的邻接矩阵是不对称的,故程序运行时只需要输入所有有向边及其权值即可。单源最短路径单源最短路径问题:有向图(带权),期望找出从某个源点SV到G中其余各顶点的最短路径。迪杰斯特拉算法即按路径长度递增产生诸顶点的最短路径算法。算法思想:设有向图G=(V,E),其中V=1,2,n,cost是表示G的邻接矩阵, costij表示有向边<i,j>的权。假设不存在有向边<i,j>,那么costij 的权为无穷大这里取值为32767。设S是一个集合,集合中一个元素表示一个顶点,从源点到这些顶点的最

5、短距离已经求出。设顶点V1为源点,集合S的初态只包含顶点V1。数组dist记录从源点到其它各顶点当前的最短距离,其初值为disti= costij,i=2,n。从S之外的顶点集合V-S中选出一个顶点w,使distw 的值最小。于是从源点到达w只通过S中的顶点,把w参加集合S中,调整dist中记录的从源点到V-S中每个顶点v的距离:从原来的distv和distw+costwv中选择较小的值作为新的distv。重复上述过程,直到S中包含V中其余顶点的最短路径。 最终结果是:S记录了从源点到该顶点存在最短路径的顶点集合,数组dist记录了从源点到V中其余各顶点之间的最短路径,path是最短路径的路径

6、数组,其中pathi表示从源点到顶点i之间的最短路径的前驱顶点。 任意一对顶点之间的最短路径 任意顶点对之间的最短路径问题,是对于给定的有向网络图G=(V,E),要对G中任意一对顶点有序对,“V,W(VW),找出V到W的最短路径。而要解决这个问题,可以依次把有向网络图中每个顶点作为源点,重复执行前面的迪杰斯特拉算法n次,即可求得每对之间的最短路径。 费洛伊德算法的根本思想:假设求从Vi到Vj的最短路径。如果存在一条长度为arcsij的路径,该路径不一定是最短路径,还需要进行n次试探。首先考虑路径<vi,v1>和<v1,vj>是否存在。如果存在,那么比拟路径<vi.

7、vj>和<vi,v1,vj>的路径长度,取长度较短者为当前所求得。该路径是中间顶点序号不大于1的最短路径。其次,考虑从vi到vj是否包含有顶点v2为中间顶点的路径< vi,v2,vj>,假设没有,那么说明从vi到vj的当前最短路径就是前一步求出的;假设有,那么<vi,v2,vj>可分解为<vi,v2>和<v2,vj>,而这两条路径是前一次找到的中间点序号不大于1的最短路径,将这两条路径长度相加就得到路径<vi,v2,vj>的长度。将该长度与前一次中求得的从vi到vj的中间顶点序号不大于1的最短路径比拟,取其长度较短者

8、作为当前求得的从vi到vj的中间顶点序号不大于2的最短路径。依此类推直至顶点vn参加当前从vi到vj的最短路径后,选出从vi到vj的中间顶点序号不大于n的最短路径为止。由于图G中顶点序号不大于n,所以vi到vj的中间顶点序号不大于n的最短路径,已考虑了所有顶点作为中间顶点的可能性,因此,它就是vi到vj的最短路径。五、运行与测试3测试实例1:利用如下列图所示的有向图来测试131771 61747632646456262455测试实例2:利用下列图求交通网络图无向图的最短路径。2553北京西安70416952349徐州成都51181234郑州515796512368上海13857广州6实例1运行

9、结果:实例2运行结果:六、总结与心得该课程设计主要是从日常生活中经常遇到的交通网络问题入手,进而利用计算机去建立一个交通咨询系统,以处理和解决旅客们关心的各种问题当然此次试验最终主要解决的问题是:最短路径问题。这次试验中我深刻的了解到了树在计算机中的应用是如何的神奇与灵活,对于很多的问题我们可以通过树的相关知识来解决,特别是在解决最短路径问题中,显得尤为重要。经过着次实验,我了解到了关于树的有关算法,如:迪杰斯特拉算法、弗洛伊德算法等,对树的学习有了一个更深的了解。参考文献【1】?数据结构?严蔚敏.清华大学出版社.【2】?数据结构课程设计?苏仕华.极械工业出版社.附录#include<s

10、tdio.h>#include<stdlib.h>#define MVNum 100#define Maxint 32767enum booleanFALSE,TRUE;typedef char VertexType;typedef int Adjmatrix;typedef structVertexType vexsMVNum;Adjmatrix arcsMVNumMVNum;MGraph;int D1MVNum,p1MVNum;int DMVNumMVNum,pMVNumMVNum;void CreateMGraph(MGraph * G,int n,int e)int

11、i,j,k,w;for(i=1;i<=n;i+)G->vexsi=(char)i;for(i=1;i<=n;i+)for(j=1;j<=n;j+)G->arcsij=Maxint;printf("输入%d条边的i.j及w:n",e);for(k=1;k<=e;k+)scanf("%d,%d,%d",&i,&j,&w);G->arcsij=w;printf("有向图的存储结构建立完毕!n");void Dijkstra(MGraph *G,int v1,int n)int

12、 D2MVNum,p2MVNum;int v,i,w,min;enum boolean SMVNum;for(v=1;v<=n;v+)Sv=FALSE; D2v=G->arcsv1v; if(D2v<Maxint) p2v=v1;else p2v=0;D2v1=0; Sv1=TRUE;for(i=2;i<n;i+)min=Maxint;for(w=1;w<=n;w+)if(!Sw && D2w<min)v=w;min=D2w;Sv=TRUE;for(w=1;w<=n;w+)if(!Sw && (D2v+G->arc

13、svw<D2w)D2w=D2v+G->arcsvw;p2w=v;printf("路径长度 路径n");for(i=1;i<=n;i+)printf("%5d",D2i);printf("%5d",i);v=p2i;while(v!=0)printf("<-%d",v);v=p2v;printf("n");void Floyd(MGraph *G,int n)int i,j,k,v,w;for(i=1;i<=n;i+)for(j=1;j<=n;j+)if( G-

14、>arcsij!=Maxint)pij=j;elsepij=0;Dij=G->arcsij;for(k=1;k<=n;k+)for(i=1;i<=n;i+)for(j=1;j<=n;j+)if(Dik+Dkj<Dij) Dij=Dik+Dkj;pij=pik;void main()MGraph *G;int m,n,e,v,w,k;int xz=1;G=(MGraph *)malloc(sizeof(MGraph);printf("输入图中顶点个数和边数n,e:");scanf("%d,%d",&n,&

15、e);CreateMGraph(G,n,e);while(xz!=0)printf("*求城市之间最短路径*n");printf("=n");printf("1.求一个城市到所有城市的最短路径n");printf("2.求任意的两个城市之间的最短路径n");printf("=n");printf("请选择 :1或2,选择0退出:n");scanf("%d",&xz);if (xz=2)Floyd(G,n);printf("输入源点或起点和终点:v,w:");scanf("%d,%d",&v,&w);k=pvw;if (k=0)printf("顶点%d 到 %d 无路径!n",v,w);elseprintf("从顶点%d 到 %d 最短路径路径是:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论