版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上1对于一个四边形给出如下定义:有一组对角相等且有一组邻边相等,则称这个四边形为奇特四边形如图中,B=D,AB=AD;如图中,A=C,AB=AD则这样的四边形均为奇特四边形(1)在图中,若AB=AD=4,A=60°,C=120°,请求出四边形ABCD的面积;(2)在图中,若AB=AD=4,A=C=45°,请直接写出四边形ABCD面积的最大值;(3)如图,在正方形ABCD中,E为AB边上一点,F是AD延长线上一点,且BE=DF,连接EF,取EF的中点G,连接CG并延长交AD于点H若EB+BC=m,问四边形BCGE的面积是否为定值?如果是,请求
2、出这个定值(用含m的代数式表示);如果不是,请说明理由2(1)问题发现如图1,ABC和DCE都是等边三角形,点B、D、E在同一直线上,连接AE填空:AEC的度数为 ;线段AE、BD之间的数量关系为 (2)拓展探究如图2,ABC和DCE都是等腰直角三角形,ACB=DCE=90°,点B、D、E在同一直线上,CM为DCE中DE边上的高,连接AE试求AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由(3)解决问题如图3,在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,DPC= °; 请直接写出点D到PC的距离为 3问题发现:(1)如图,点A和点B均
3、在O上,且AOB=90°,点P和点Q均在射线AM上,若APB=45°,则点P与O的位置关系是 ;若AQB45°,则点Q与O的位置关系是 问题解决:如图、图所示,四边形ABCD中,ABBC,ADDC,DAB=135°,且AB=1,AD=2,点P是BC边上任意一点(2)当APD=45°时,求BP的长度(3)是否存在点P,使得APD最大?若存在,请说明理由,并求出BP的长度;若不存在,也请说明理由4问题探究:(1)如图1,在ABC中,B=90°,AB=3,BC=4,若ABC的边上存在点P,使ABP是以AB为腰的等腰三角形,则CP的长为 (2
4、)如图2,在矩形ABCD中,AB=3,边BC上存在点P,使APD=90°,求矩形ABCD面积的最小值问题解决:(3)如图3,在四边形ABCD中,AB=3,A=B=90°,C=45°,边CD上存在点P,使APB=60°,在此条件下,四边形ABCD的面积是否存在最大值?若存在,求出最大值;若不存在,请说明理由5(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b填空:当点A位于 时,线段AC的长取得最大值,且最大值为 (用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形A
5、BD和等边三角形ACE,连接CD,BE请找出图中与BE相等的线段,并说明理由;直接写出线段BE长的最大值(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标6问题探究:(1)如图,边长为4的等边OAB位于平面直角坐标系中,将OAB折叠,使点B落在OA的中点处,则折痕长为 ;(2)如图,矩形OABC位于平面直角坐标系中,其中OA=8,AB=6,将矩形沿线段MN折叠,点B落在x轴上,其中AN=AB,求折痕MN的长;问题解决:(3)如图,四边形OA
6、BC位于平面直角坐标系中,其中OA=AB=6,CB=4,BCOA,ABOA于点A,点Q(4,3)为四边形内部一点,将四边形折叠,使点B落在x轴上,问是否存在过点Q的折痕,若存在,求出折痕长,若不存在,请说明理由7(1)问题发现:如图,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为 ;(2)深入探究:如图,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使ABC=AMN,AM=MN,连接CN,试探究ABC与ACN的数量关系,并说明理由;(3)拓展延伸:如图,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=,试求EF的长8问题发现(1)如图,RtABC中,C=90°,AC=3,BC=4,点D是AB边上任意一点,则CD的最小值为 (2)如图,矩形ABCD中,AB=3,BC=4,点M、点N分别在BD、BC上,求CM+MN的最小值(3)如图,矩形ABCD中,AB=3,BC=4,点E是AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 职业学校泥水工程协议
- 学校建设防尘网施工合同
- 地震学校食堂员工劳动合同
- 农业企业股权登记策略
- 林地征用补偿协议范本
- 合同纠纷调解培训
- 摩托车交易合同模板
- 农药化肥知识产权认证管理办法
- 展厅多媒体使用规范
- 财务资质管理办法
- 江西省住宅工程开裂、渗漏等质量常见问题防治技术指南
- 工程变更申请单(ECR)
- 高考理解性默备考指导(基本题型+考查内容+考查形式+应对策略)
- 电梯安装危险源与危险评价表
- 医院信息化建设项目验收方案
- 爱心助学基金会章程样本
- 2010年408真题及答案解析
- 劳动教育课程实施方案(通用12篇)
- 慕课课程课件
- 0~36个月儿童中医药健康管理服务
- 高中英语-Explore Peru教学设计学情分析教材分析课后反思
评论
0/150
提交评论