




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高二数学选修2-2第一章导数及其应用测试题(时间120分钟,分值150分)第卷(选择题,共60分)一、 选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案写在答题卡上) 1设,则( )A B C D2设,则( )A B C D3已知,则的值为( )A B C D不存在4曲线在点处的切线方程为( )A B C D5已知函数的图象与轴有三个不同交点,且在,时取得极值,则的值为( )A4 B5 C6 D不确定6在上的可导函数,当取得极大值,当取得极小值,则的取值范围是( )A B C D7函数在区间的值域为( )A B C D8积分( )
2、A B C D9由双曲线,直线围成的图形绕轴旋转一周所得旋转体的体积为( )A B C D10由抛物线与直线所围成的图形的面积是( )ABCD11设底面为等边三角形的直棱柱的体积为,则其表面积最小时,底面边长为( ) D12某人要剪一个如图所示的实心纸花瓣,纸花瓣的边界由六段全等的正弦曲线弧组成,其中曲线的六个交点正好是一个正六边形的六个顶点,则这个纸花瓣的面积为( )A BC D第卷(非选择题,共90分)二、填空题(每小题4分,共16分。请将答案填在答题卷相应空格上。)13曲线在点处的切线与轴、直线所围成的三角形的面积为,则_ 。14一点沿直线运动,如果由始点起经过秒后的位移是,那么速度为零
3、的时刻是_。15_.16 _。三、解答题:(本大题共5小题,共74分,解答应写出文字说明,证明过程或演算步骤)(17)(本小题满分10分)已知向量,若函数在区间上是增函数,求的取值范围。(18)(本小题满分12分)已知函数在处取得极值.(1)讨论和是函数的极大值还是极小值;(2)过点作曲线的切线,求此切线方程.(19)(本小题满分14分)设,求函数的最大值和最小值。(20)(本小题满分12分)用半径为的圆形铁皮剪出一个圆心角为的扇形,制成一个圆锥形容器,扇形的圆心角多大时,容器的容积最大?(21) (本小题满分12分) 直线分抛物线与轴所围成图形为面积相等的两个部分,求的值.(22) (本小题
4、满分14分)已知函数。 (1)若,且函数存在单调递减区间,求的取值范围。 (2)设函数的图象与函数的图象交于点,过线段的中点作轴的垂线分别交、于点。证明:在点处的切线与在点处的切线不平行。新课改高二数学选修2-2第一章导数及其应用测试题参考答案一、选择题:(本大题共10小题,每小题5分,共50分。)123456789101112BCABBCABBACB二、填空题:(本大题共4小题,每小题4分,共16分)(13)、 (14)、 (15)、 (16)、 三、解答题:(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤)(17)(本小题满分10分) 解:由题意知:,则 (3分) 在区间
5、上是增函数, 即在区间上是恒成立, (5分) 设,则,于是有 当时,在区间上是增函数 (8分) 又当时, ,在上,有,即时,在区间上是增函数当时,显然在区间上不是增函数 (10分)(18)(本小题满分12分) 解:(1),依题意, ,即 解得 (3分) ,令,得 若,则 故在上是增函数; 若,则 故在上是减函数; 所以是极大值,是极小值。 (6分) (2)曲线方程为,点不在曲线上。 设切点为,则 由知,切线方程为 (9分) 又点在切线上,有 化简得 ,解得 所以切点为,切线方程为 (12分)(19)(本小题满分14分)解: 令,得: (2分) 当变化时,的变化情况如下表:单调递增极大值单调递减
6、极小值单调递增 极大值为,极小值为 又,故最小值为0。 (6分)最大值与有关: (1)当时,在上单调递增,故最大值为: (8分) (2)由,即:,得: ,或 又,或 (10分) 当时,函数的最大值为: (12分)(3)当时,函数的最大值为: (14分)(20)(本小题满分12分) 解:设圆锥的底面半径为,高为,体积为,则 由,所以 ,令得 (6分) 易知:是函数的唯一极值点,且为最大值点,从而是最大值点。 当时,容积最大。 (8分) 把代入,得 由得 即圆心角时,容器的容积最大。 (11分)答:扇形圆心角时,容器的容积最大。 (12分) (21) (本小题满分12分) 解:解方程组 得:直线分抛物线的交点的横坐标为 和 (4分) 抛物线与轴所围成图形为面积为 (6分) 由题设得 (10分) 又,所以,从而得: (12分) (22) (本小题满分14分) 解:(1)时,函数,且函数存在单调递减区间,有解。 (2分)又, 有 的解。 当时,为开口向上的抛物线,总有 的解; (4分) 当时,为开口向下的抛物线,而有 的解,则 ,且方程至少有一正根,此时, 综上所述,的取值范围为。 (7分)(2)设点,且,则 点的横坐标为,在点处的切线斜率为;在点处的切线斜
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流服务与客户满意度试题及答案
- 外出安全教育
- 塔吊维修维护培训课件
- 初中语文-第二单元《荷叶·母亲》散文诗冰心教学设计-2023-2024学年统编版语文七年级上册
- 临床科室科研成果的推广与应用计划
- 优化客户体验的具体措施计划
- 秋季课堂管理与纪律维护计划
- 投资咨询师发展路径试题及答案
- 持续改进在年度工作计划中的体现
- 从成功案例获取灵感的陪诊师试题及答案
- 冷链温度记录表
- DB44-T 1661-2021《河道管理范围内建设项目技术规程》-(高清现行)
- SURPAC软件地质建模操作步骤
- 跌倒坠床管道滑脱风险评估PPT
- 有限空间辨识记录
- visual-foxpro-6.0完整版课件全套ppt教学教程最全整套电子讲义幻灯片(最新)
- 地下室钢结构施工方案
- 多功能厅音响设计方案说明
- 重大事故隐患治理方案.
- 13恶劣天气监理实施细则
- 景观绿化和室外管网施工组织方案
评论
0/150
提交评论