版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第5章 定积分及其应用 5.2 微积分基本公式 习题解1设函数,求,。【解】由题设得,于是得 ,。2计算下列各导数:;【解】。;【解】。;【解】。【解】。3设函数由方程所确定,求。【解法一】方程中完成积分即为 ,亦即为 ,得知,解出,得,于是得。【解法二】在方程两边对求导,注意到,得即得 ,亦即,解出,得,方程中完成积分即为 ,亦即为 ,得知,再将代入中,得。4设,求。【解】问题是由参数方程求导【解法一】。【解法二】。5求下列极限:;【解】这是“”未定型极限,应用洛必达法则,得。;【解】这是“”未定型极限,应用洛必达法则,得 - 应用洛必达法则 - 再次应用洛必达法则。;【解】这是“”未定型极
2、限,应用洛必达法则,得 - 应用洛必达法则 - 完成求导 - 整理。【解】这是“”未定型极限,应用洛必达法则,得 - 应用洛必达法则 - 完成求导 - 分子分母同消去 - 再次应用洛必达法则 - 分子分母同消去。6当为何值时,函数有极值。【解】由给定的函数可见,其定义域为,由于,可得有唯一驻点,无不可导点,显见,当时,当时,可知,函数在点处取得极小值。7计算下列定积分:;【解】。;【解】。;【解】。;【解】。;【解】。;【解】。;【解】。;【解】。;【解】。;【解】。;【解】。,其中。【解】。8设,求在上的表达式,并讨论在内的连续性。【解】当时,;当时,;当时,;当时,当时,于是,由于初等函数
3、在内连续,初等函数在内连续,故要讨论在内的连续性,仅须讨论在处的连续性,由于,且,可知在处连续,从而,在内连续。9设,求在内的表达式。【解】当时,当时,当时,于是得。10设,求。【解】对等号两端在区间上积分,注意为常数,得即有 ,移项,整理即得 。11已知,求。【解】问题在于求出和,可应用上题的方法,对等号两端在区间上积分,注意和均为常数,得 即有 ,移项、整理得 ,将其代入题目已知式,得,再对上式的等号两端在区间上积分,得即有 移项、整理得 ,最后得 。12设(),求。【解】由题设,得,且于是又得 ,从而有 ,这时有 ,代入,得 ,即,得到 。13设连续,若满足,求。【解】设,则,于是,再由题设,得,即得,两边求导得 ,即有 ,从而 ,?14设函数在区间上连续,在内可导且,证明:在内有。【证明】任取,则由题设有,函数在区间上连续,在内可导且,那么对于函数,有,令,则由已知在内可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年广告宣传印刷品订购协议样本
- 2024年购销协议印花税速查指南
- 城市中央公园绿化改造项目协议模板
- 2024年度货物运输险协议规范文本
- 2024年适用商业担保借款协议样式
- 数智驱动的研究生教育治理体系重构框架
- 国家教育战略与育强国建设的目标
- 2024年消防系统增补协议模板
- 2024年区域独家食品销售代理协议
- 公司工期合同范本
- 大学生辩论赛评分标准表
- 诊所污水污物粪便处理方案及周边环境
- 江苏开放大学2023年秋《马克思主义基本原理 060111》形成性考核作业2-实践性环节(占过程性考核成绩的30%)参考答案
- 《我是班级的主人翁》的主题班会
- 酒店安全设施及安全制度
- 近代化的早期探索与民族危机的加剧 单元作业设计
- 租赁机械设备施工方案
- 屋面融雪系统施工方案
- 二年级家长会语文老师课件
- 结构加固改造之整体结构加固教学课件
- 教堂安全风险分级管控体系方案全套资料(2019-2020新标准完整版)
评论
0/150
提交评论