bp神经网络及matlab实现讲解学习_第1页
bp神经网络及matlab实现讲解学习_第2页
bp神经网络及matlab实现讲解学习_第3页
bp神经网络及matlab实现讲解学习_第4页
bp神经网络及matlab实现讲解学习_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、bp神经网络及mat l ab实现bp神经网络及matlab实现分类:算法学习2012-06-20 20:56 66399 人阅读 评论(28)收藏 举报 网络 matlab 算法 functionnetworkinput本文主要内容包括:(1)介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法。第0节、引例本文以Fisher的Iris数据集作为神经网络程序的测试数据集。ms数据集可以在 /wiki/Iris_flower_data_set 找到。这里简要介绍一 下Iris数据集:有一

2、批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。不同 品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。我们现 有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数 据。一种解决方法是用已有的数据训练一个神经网络用作分类器。如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或 者已经了解神经网络基本原理,请直接跳到第二节一一神经网络实现。第一节、神经网络基本原理1.人工神经元(Artificial Neuron ) 模型人工神经元是神经网络的基本元素,其原理可以用下图表示:图1.人工神经元模型图中x1xn是从其他神经元传来

3、的输入信号,wij表示表示从神经元j到神 经元i的连接权值,8表示一个阈值(threshold ),或称为偏置(bias)。则神经 元i的输出与输入的关系表示为:产工居=ffnetj图中yi表示神经元i的输出,函数f称为激活函数(Activation Function ) 或转移函数(Transfer Function ) , net称为净激活(net activation)。若将阈值 看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为:n口明=W叫产i若用X表示输入向量,用 W表示权重向量,即:X = x0 , x1 , x2 ,xn w =吗之-%则神经元的输出可以表示为向量

4、相乘的形式:net. = XW|y; = f(net£) = f(XW若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net为负,则称神经元处于抑制状态。图1中的这种 阈值加权和”的神经元,K型称为 M-P模型(McCulloch-Pitts Model ),也称为神经网络的一个 处理单元(PE, Processing Element )。2.常用激活函数激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的 激活函数。(1)线性函数(Liner Function )= k * 工 + u(2)斜面函数(Ramp Function )

5、9; T t x> cf(x) = k 等冤, |jt| < c1 T j x V c(3)阈值函数(Threshold Function )以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函 数。 S 形函数(Sigmoid Function )f(X)=:(° < 酬)< 1)HI E该函数的导函数:f,保)= a fQ)【i 一 六,)(5)双极S形函数2FG) = 1 : s - 1 ( -1 < f(x) < 1 该函数的导函数:口 1 一汽幻4许可=2S形函数与双极S形函数的图像如下:图3. S形函数与双极S形函数图像双极S

6、形函数与S形函数主要区别在于函数的值域,双极S形函数值域是(-1,1),而S形函数值域是(0,1)。由于S形函数与双极S形函数都是可导的(导函数是连续函数),因此适合 用在BP神经网络中。(BP算法要求激活函数可导)3.神经网络模型神经网络是由大量的神经元互联而构成的网络。根据网络中神经元的互联 方式,常见网络结构主要可以分为下面3类:(1)前馈神经网络 (Feedforward Neural Networks )前馈网络也称前向网络。这种网络只在训练过程会有反馈信号,而在分类 过程中数据只能向前传送,直到到达输出层,层间没有向后的反馈信号,因此 被称为前馈网络。感知机(perceptron)

7、与BP神经网络就属于前馈网络。图4中是一个3层的前馈神经网络,其中第一层是输入单元,第二层称为 隐含层,第三层称为输出层(输入单元不是神经元,因此图中有 2层神经 元)。Input图4.前馈神经网络对于一个3层的前馈神经网络N,若用X表示网络的输入向量,W1W3 表示网络各层的连接权向量,F1F3表示神经网络3层的激活函数。那么神经网络的第一层神经元的输出为:O1 = F1( XW1 )第二层的输出为:O2 = F2 ( F1( XW1 ) W2 )输出层的输出为:O3 = F3( F2 ( F1( XW1 ) W2 ) W3 )若激活函数F1F3都选用线性函数,那么神经网络的输出 O3将是输

8、入X 的线性函数。因此,若要做高次函数的逼近就应该选用适当的非线性函数作为 激活函数。(2)反馈神经网络(Feedback Neural Networks )反馈型神经网络是一种从输出到输入具有反馈连接的神经网络,具结构比前馈网络要复杂得多。典型的反馈型神经网络有:Elman网络和Hopfield网络。Ihpmt图5.反馈神经网络(3)自组织网络(SOM ,Self-Organizing Neural Networks )自组织神经网络是一种无导师学习网络。它通过自动寻找样本中的内在规 律和本质属性,自组织、自适应地改变网络参数与结构。图6,自组织网络4.神经网络工作方式神经网络运作过程分为学

9、习和工作两种状态。(1)神经网络的学习状态网络的学习主要是指使用学习算法来调整神经元间的联接权,使得网络输出更符合实际。学习算法分为 有导师学习(Supervised Learning ) 与无导师学 习(Unsupervised Learning ) 两类。有导师学习算法将一组训练集(training set )送入网络,根据网络的实际输 出与期望输出间的差别来调整连接权。有导师学习算法的主要步骤包括: 1)从样本集合中取一个样本(Ai, Bi);2)计算网络的实际输出O;3)求 D=Bi-O ;4)根据D调整权矩阵W;5)对每个样本重复上述过程,直到对整个样本集来说,误差不超过规定范 围。

10、BP算法就是一种出色的有导师学习算法。无导师学习抽取样本集合中蕴含的统计特性,并以神经元之间的联接权的 形式存于网络中。Hebb学习律是一种经典的无导师学习算法。(2)神经网络的工作状态神经元间的连接权不变,神经网络作为分类器、预测器等使用 下面简要介绍一下 Hebb学习率与Delta学习规则。 无导师学习算法:Hebb学习率Hebb算法核心思想是,当两个神经元同时处于激发状态时两者间的连接 权会被加强,否则被减弱。为了理解Hebb算法,有必要简单介绍一下条件反射实验。巴甫洛夫的条 件反射实验:每次给狗喂食前都先响铃,时间一长,狗就会将铃声和食物联系 起来。以后如果响铃但是不给食物,狗也会流口

11、水。How Dog Training Works1. Before Cond itioningFoodUnconditionedStlmiua2. fi-efo re C&nd i tisi ng-酷ResponseNo SdiivdtionSMiwatiDnNeutral StimulusBell+fl J4.After JndhiMirgJ.During ConditioningK监pn帛公所阿寓nF Stlmuiu*Une。向 tSmd ResponseRes-pQm-eSafiAhonCorid Itioned Rspvh* 。搀匐 heMjewc弱 Mion Uncondit

12、iAnodRepOrtM Food图7.巴甫洛夫的条件反射实验受该实验的启发,Hebb的理论认为在同一时间被激发的神经元间的联系 会被强化。比如,铃声响时一个神经元被激发,在同一时间食物的出现会激发 附近的另一个神经元,那么这两个神经元间的联系就会强化,从而记住这两个 事物之间存在着联系。相反,如果两个神经元总是不能同步激发,那么它们问 的联系将会越来越弱。Hebb学习律可表示为:吗式t+ 1) = w£t)+仃制K©其中wij表示神经元j到神经元i的连接权,yi与yj为两个神经元的输出, a是表示学习速度的常数。若yi与yj同时被激活,即yi与yj同时为正,那么 Wij将

13、增大。若yi被激活,而yj处于抑制状态,即yi为正yj为负,那么 Wij将 变小。 有导师学习算法:Delta学习规则Delta学习规则是一种简单的有导师学习算法,该算法根据神经元的实际输 出与期望输出差别来调整连接权,其数学表示如下:w0(t + 1) =+a( 4 - H)Z(t)其中Wij表示神经元j到神经元i的连接权,di是神经元i的期望输出,yi 是神经元i的实际输出,xj表示神经元j状态,若神经元j处于激活态则xj为 1,若处于抑制状态则xj为0或-1 (根据激活函数而定)。a是表示学习速度 的常数。假设xi为1,若di比yi大,那么Wij将增大,若di比yi小,那么Wij 将变小

14、。Delta规则简单讲来就是:若神经元实际输出比期望输出大,则减小所有输 入为正的连接的权重,增大所有输入为负的连接的权重。反之,若神经元实际 输出比期望输出小,则增大所有输入为正的连接的权重,减小所有输入为负的 连接的权重。这个增大或减小的幅度就根据上面的式子来计算。(5)有导师学习算法:BP算法采用BP学习算法的前馈型神经网络通常被称为 BP网络Input图8.三层BP神经网络结构BP网络具有很强的非线性映射能力,一个 3层BP神经网络能够实现对任 意非线性函数进行逼近(根据 Kolrnogorov定理)。一个典型的3层BP神经 网络模型如图7所示。BP网络的学习算法占篇幅较大,我打算在下

15、一篇文章中介绍。第二节、神经网络实现1 .数据预处理在训练神经网络前一般需要对数据进行预处理,一种重要的预处理手段是 归一化处理。下面简要介绍归一化处理的原理与方法。(1)什么是归一化?数据归一化,就是将数据映射到0,1或卜1,1区间或更小的区间,比如(0.1,0.9)。(2)为什么要归一化处理?< 1>输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经 网络收敛慢、训练时间长。< 2>数据范围大的输入在模式分类中的作用可能会偏大,而数据范围小的输入 作用就可能会偏小。< 3>由于神经网络输出层的激活函数的值域是有限制的,因此需要将网络训练 的

16、目标数据映射到激活函数的值域。例如神经网络的输出层若采用S形激活函数,由于S形函数的值域限制在(0,1),也就是说神经网络的输出只能限制在 (0,1),所以训练数据的输出就要归一化到0,1区间。<4>S形激活函数在(0,1)区间以外区域很平缓,区分度太小。例如 S形函数f(X) 在参数a=1时,f(100)与f(5)只相差0.0067。(3)归一化算法一种简单而快速的归一化算法是线性转换算法。线性转换算法常见有两种 形式:<1>y = ( x - min )/( max - min )其中min为x的最小值,max为x的最大值,输入向量为x,归一化后的 输出向量为y。上

17、式将数据归一化到0,1 区间,当激活函数采用S形函数时 (值域为(0,1)时这条式子适用。<2>y = 2 * ( x - min ) / ( max - min ) - 1这条公式将数据归一化到-1 , 1 区间。当激活函数采用双极 S形函数 (值域为(-1,1)时这条式子适用。Matlab数据归一化处理函数Matlab 中归一化处理数据可以采用 premnmx , postmnmx , tramnmx 这 3个函数。<1> premnmx语法:pn,minp,maxp,tn,mint,maxt = premnmx(p,t)参数:pn: p矩阵按行归一化后的矩阵min

18、p , maxp : p矩阵每一行的最小值,最大值tn: t矩阵按行归一化后的矩阵mint, maxt: t矩阵每一行的最小值,最大值作用:将矩阵p, t归一化到-1,1,主要用于归一化处理训练数据集。<2> tramnmx语法:pn = tramnmx(p,minp,maxp)参数:minp , maxp: premnmx 函数计算的矩阵的最小,最大值pn :归一化后的矩阵作用:主要用于归一化处理待分类的输入数据。<3> postmnmx语法:p,t = postmnmx(pn,minp,maxp,tn,mint,maxt)参数:minp , maxp: premnm

19、x 函数计算的 p矩阵每行的最小值,最大值 mint, maxt: premnmx函数计算的t矩阵每行的最小值,最大值 作用:将矩阵pn , tn映射回归一化处理前的范围。postmnmx函数主要用于将 神经网络的输出结果映射回归一化前的数据范围。2.使用Matlab实现神经网络使用Matlab建立前馈神经网络主要会使用到下面3个函数:newff :前馈网络创建函数train :训练一个神经网络 sim :使用网络进行仿真下面简要介绍这3个函数的用法。(1) newff 函数<1>newff函数语法newff函数参数列表有很多的可选参数,具体可以参考 Matlab的帮助文 档,这里

20、介绍newff函数的一种简单的形式。语法:net = newff ( A, B, C ,'trainFun ')参数:A: 一个n&的矩阵,第i行元素为输入信号xi的最小值和最大值;B: 一个k维行向量,其元素为网络中各层节点数;C: 一个k维字符串行向量,每一分量为对应层神经元的激活函数;trainFun :为学习规则采用的训练算法。<2>常用的激活函数常用的激活函数有:a)线性函数 (Linear transfer function) f(x) = x该函数的字符串为purelin 'b)对数 S 形转移函数(Logarithmic sigmoi

21、d transfer function )fG) =*二 c 0 << I)J- T 毛该函数的字符串为logsig 'c)双曲正切 S 形函数 (Hyperbolic tangent sigmoid transfer function )f(X)= 1 j f -1(-1 < fOO V 1 )也就是上面所提到的双极 S形函数。该函数的字符串为tansig 'Matlab的安装目录下的toolboxnnetnnetnntransfer 子目录中有所有激活 函数的定义说明。<3>常见的训练函数常见的训练函数有:traingd : 梯度下降 BP 训

22、练函数(Gradient descent backpropagation)traingdx :梯度下降自适应学习率训练函数<4>网络配置参数一些重要的网络配置参数如下:net.trainparam.goal :神经网络训练的目标误差net.trainparam.show : 显示中间结果的周期net.trainparam.epochs :最大迭代次数net.trainParam.lr :学习率train函数网络训练学习函数。语法:net, tr, Y1, E = train( net, X, Y )参数:X:网络实际输入Y:网络应有输出tr:训练跟踪信息Y1 :网络实际输出E:误差

23、矩阵sim函数语法:Y=sim(net,X)参数:net:网络X:输入给网络的K XN矩阵,其中K为网络输入个数,N为数据样本数Y:输出矩阵QXN,其中Q为网络输出个数Matlab BP 网络实例我将Iris数据集分为2组,每组各75个样本,每组中每种花各有25个样 本。其中一组作为以上程序的训练样本,另外一组作为检验样本。为了方便训 练,将3类花分别编号为1,2,3 o使用这些数据训练一个4输入(分别对应4个特征),3输出(分别对应 该样本属于某一品种的可能性大小)的前向网络。Matlab程序如下:0%实取训练数据f1,f2,f3,f4,class = textread('train

24、Data.txt' , '%f%f%f%f%f ,150);%!征信归一化input,minI,maxI = premnmx( f1 , f2 , f3 , f4 ');%勾造输出矩阵s = length( class);output = zeros( s , 3 );for i = 1 : soutput( i , class( i ) ) = 1 ;end嘘【J建神经网络net = newff( minmax(input) , 10 3 , 'logsig' 'purelin' ,'traingdx' );%设置训练参

25、数net.trainparam.show = 50 ;net.trainparam.epochs = 500 ;net.trainparam.goal = 0.01 ;net.trainParam.lr = 0.01 ;%开始训练net = train( net, input , output');%读取测试数据t1 t2 t3 t4 c = textread( 'testData.txt' , '%f%f%f%f%f ,150);%M试数据归一化testInput = tramnmx ( t1,t2,t3,t4' , minI, maxI );%&am

26、p;真Y = sim( net , testInput )%统计识别正确率s1 , s2 = size( Y );hitNum = 0 ;for i = 1 : s2m , Index = max( Y( : , i );if ( Index = c(i)hitNum = hitNum + 1 ;endendsprintf('识别率是 %3.3f%',100 * hitNum / s2 )以上程序的识别率稳定在95%左右,训I练100次左右达到收敛,训练曲线 如下图所示:fl10亩由E) JOJJW paranbs ue ?区Best Tra ring Performance

27、is NaN at epoch 500050100150200250300360400 好。 mSOO Epochs图9.训练性能表现(5)参数设置对神经网络性能的影响我在实验中通过调整隐含层节点数,选择不通过的激活函数,设定不同的学习率,<1>隐含层节点个数隐含层节点的个数对于识别率的影响并不大,但是节点个数过多会增加运 算量,使得训练较慢。<2>激活函数的选择激活函数无论对于识别率或收敛速度都有显著的影响。在逼近高次曲线 时,S形函数精度比线性函数要高得多,但计算量也要大得多。<3>学习率的选择学习率影响着网络收敛的速度,以及网络能否收敛。学习率设置偏小

28、可以 保证网络收敛,但是收敛较慢。相反,学习率设置偏大则有可能使网络训练不 收敛,影响识别效果。3,使用AForge.NET实现神经网络(1) AForge.NET 简介AForge.NET是一个C#实现的面向人工智能、计算机视觉等领域的开源架 构。AForge.NET源代码下的Neuro目录包含一个神经网络的类库。AForge.NET 主页:AForge.NET 代码下载:http:/code.google.eom/p/aforge/Aforge.Neuro工程的类图如下:DistLinceeurcnDistaaceNetvorkActivationNe:vork图10. AForge.Ne

29、uro类库类图下面介绍图9中的几个基本的类:Neuron 神经元的抽象基类Layer 一层的抽象基类,由多个神经元组成Network 神经网络的抽象基类,由多个层(Layer)组成lActivationFunction - 激活函数(activation function ) 的接口 lUnsupervisedLearning - 无导师学习 (unsupervised learning ) 算法的接口ISupervisedLearning - 有导师学习 (supervised learning ) 算法的接口(2)使用Aforge建立BP神经网络使用AForge建立BP神经网络会用到下面的几个类:< 1> SigmoidFunction : S 形神经网络构造函数: public SigmoidFunction( double alpha )参数alpha决定S形函数的陡峭程度。&

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论