整理SPSS多元回归分析实例_第1页
整理SPSS多元回归分析实例_第2页
整理SPSS多元回归分析实例_第3页
整理SPSS多元回归分析实例_第4页
整理SPSS多元回归分析实例_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、多兀回归分析在大多数的实际问题中,影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析.可以建立因变量y与各自变量Xjj=1,2,3,之间的多元线性回归模型:其中:bo是回归常数;bkk=1,2,3,n是回归参数;e是随机误差.多元回归在病虫预报中的应用实例:某地区病虫测报站用相关系数法选取了以下4个预报因子;X1为最多连续10天诱蛾量头;X2为4月上、中旬百束小谷草把累计落卵量块;X3为4月中旬降水量毫米,X4为4月中旬雨日天;预报一代粘虫幼虫发生量 y 头/m2.分级别数值 列成表2-1.预报量y:每平方米幼虫010头为1级,1120头为2级,2140头为3级,40头以上为4级

2、.预报因子:X1诱蛾量0300头为I级,301600头为2级,6011000头为3级,1000头以上为4级;X2卵量0150块为1 级,15l300块为2级,301550块为3级,550块以上为4级;X3降水量010.0毫米为1级,10.113.2毫米为2级,13.317.0 毫米为3级,17.0毫米以上为4级;X4雨日02天为1级,34天为2级,5天为3级,6天或6天以上为4级.表2-1X1x2x3x4y年蛾量级别卵量级别降水量级别雨日级别幼虫密 度级别19601022411214.31211011961300144030.111141196269936717.511191196318764

3、675417.147455419654318011.9121111966422220101013119678063510311.82322831976115124020.6121711971718 :31460418.44424541972 二8033630413.43二 3226319735722280213.22421621974 寸2641330342.24321921975 11981165271.845323319764611214017.51532831977 寸7693640444.7432444197825516510101112数据保存在 DATA6-5.SAV 文件中.1准

4、备分析数据在SPSS数据编辑窗口中,创立年份蛾量卵量、降水量、雨日和 幼虫密度变量,并输入数据.再创立蛾量、卵量、降水量、雨日和幼虫密度的分级变量xi X2 X3 X4和y它们对应的分级数值可以在spss数据编辑窗口中通过计算产生.编辑后的数据显示如图2-1.图2-1或者翻开已存在的数据文件DATA6-5.SAV .2启动线性回归过程单击SPSS主菜单的“ An alyze下的“ Regressio n中"L in ear项,将翻开如图2-2所示的线性回归过程 窗口.图2-2线性回归对话窗口3) 设置分析变量设置因变量:用鼠标选中左边变量列表中的幼虫密度y'变量,然后点击 “

5、Dependent栏左边的丄°向右拉按钮,该变量就移到“ Dependent变量显示栏里.设置自变量:将左边变量列表中的蛾量x1 卵量x2 降水量x3 雨日x4'变量,选移到 “Independent(S)自'变量显示栏里.设置限制变量:本例子中不使用限制变量,所以不选择任何变量.选择标签变量:选择 年份为标签变量.选择加权变量:本例子没有加权变量,因此不作任何设置.4) 回归方式本例子中的4个预报因子变量是经过相关系数法选取出来的,在回归分析时不做筛选.因此在“ Method'框中选中“ En ter选项,建立全回归模型5设置输出统计量单击“Statisti

6、cs按钮,将翻开如图2-3所示的对话框.该对话框用于设置相关参数.其中各项的意义分别为:图 2-3“ Statistics对话框 “ Regression Coefficients 回归系数 选项:屮“ Estimate輸出回归系数和相关统计量.厂“Confidenee interval回归系数的95%置信区间.厂“Covarianee matrix回归系数的方差-协方差矩阵.本例子选择“ Estimates输出回归系数和相关统计量.“ Residuals残差选项:“ DurbinWatson Durbi-Watson 检验.厂“Casewise diag no Stic输出满足选择条件的观测

7、量的相关信息.选择该项,下面两项处于可选状态:'* “Outliers outside standard deviations选择标准化残差的绝对值大于输入值的观测量;“ All cases选择所有观测量.本例子都不选.其它输入选项ANOVA 表.v “ Model fit输出相关系数、相关系数平方、调整系数、估计标准误、“ R squared chang输出由于参加和剔除变量而引起的复相关系数平方的变化.I“ Descriptives输出'变量矩阵、标准差和相关系数单侧显著性水平矩阵.I “ Part and partial correlation相关系数和偏相关系数.厂&q

8、uot;Collinearity diagnostics显示单个变量和共线性分析的公差.本例子选择 “ Model fit项.6 绘图选项“X'和在主对话框单击“Plots按钮,将翻开如图2-4所示的对话框窗口.该对话框用于设置要绘制的图形的参数.图中的nrptMDWT厂 Prcbtfticc all pjBitiql ploln“ 丫框用于选择X轴和Y轴相应的变量.-zmEo vnt sinHi SIH "AOJPKt i) SRE SID SDRI 510Slandaritired Residual Plotsi htDrmal prohslbiilily plot图2-

9、4 “ Plots绘图对话框窗口左上框中各项的意义分别为* “ DEPENDNT 因变量.* “ ZPRED标准化预测值.* “ ZRESID标准化残差.* “ DRESID删除残差.* “ ADJPRED调节预测值.* “ SRESID学生氏化残差.* “ SDRESID'学生氏化删除残差.“ Stan dardized Residual Plots设置各变量的标准化残差图形输出.其中共包含两个选项:“ Histogram用直方图显示标准化残差.“ Normal probability plots比拟标准化残差与正态残差的分布示意图.“ Produce all partial plo

10、t偏残差图.对每一个自变量生成其残差对因变量残差的散点图.本例子不作绘图,不选择.7保存分析数据的选项在主对话框里单击“Save按钮,将翻开如图 2-5所示的对话框.图2-5 “ Sav对话框"Predicted Values预测值栏选项:PRE/头命名的变量,存放根据回Un sta ndardized非标准化预测值.就会在当前数据文件中新添加一个以字符 归模型拟合的预测值.Sta ndardized标准化预测值.Adjusted调整后预测值.S.E. of mean predictions 预测值的标准误.本例选中“ Un sta ndardized非标准化预测值.“ Distan

11、ces距离栏选项:Mahala nobis:距离.Cook' s : Co距离.Leverage values:杠杆值. "Prediction Intervals预测区间选项:厂Mea n:区间的中央位置.厂In dividual:观测量上限和下限的预测区间.在当前数据文件中新添加一个以字符“ LICI_开头命名的变量,存放预测区间下限值;以字符“ UICI_开头命名的变量,存放预测区间上限值.Con fide nee In terval :置信度.本例不选. “Save to New File保存为新文件:选中“Coefficient statistics项将回'

12、归系数保存到指定的文件中.本例不选. “ Export model information to XML file 导出统计过程中的回归模型信息到指定文件.本例不选. “ Residuals保存残差选项:“ Unstandardizec非标准化残差.I“ Sta ndardizec标准化残差.1“ Stude ntized学生氏化残差.I “ Deleted删除残差.I “ Stude ntized deletec学 生氏化删除残差.本例不选. “Influence Statistics统计量的影响.“ DfBeta(s)删除一个特定的观测值所引起的回归系数的变化.I“ Standardize

13、d DfBeta(s)标准化'的 DfBeta 值.“ DiFit删除一个特定的观测值所引起的预测值的变化.1“ Standardized DiFit标准化的 DiFit 值.“ Covaria nee ratio删除一个观测值后的协方差矩隈的行列式和带有全部观测值的协方差矩阵的行列式的比率.本例子不保存任何分析变量,不选择.8 其它选项在主对话框里单击"Options按钮,将翻开如图 2-6所示的对话框.Line-ar Un mm GptmmCancelStepping Method Criteria 诊 Use probability oFfHelp£ntryt

14、Rejnovfllt .1U厂 Use F yalutEntiy;A cm ovatiI* ndutfe constant Ini EquationMowing Vsl uc:Ek石IvM匸匸.爭v吕Exclude cae pairwiser" Bcplcc wiih mean图2-6 "Options设置对话框 “Stepping Method Criteria框用于进行逐步回归时内部数值的设定.其中各项为:* " Use probability of F如果一个变量的F值的概率小于所设置的进入值Entry,那么这个变量将被选入回归方程中;当变量的F值的概率大于

15、设置的剔除值Removal,那么该变量将从回归方程中被剔除.由此可见,设置"Use probability of F时,应使进入值小于剔除值.'"Ues F value如果一个变量的 F值大于所设置的进入值Entry,那么这个变量将被选入回归方程中;当变量的F值小于设置的剔除值Removal,那么该变量将从回归方程中被剔除.同时,设置"Use F value时,"应使进入值大于剔除值.本例是全回归不设置. “Include constant in equation选择此项表示在回归方程中有常数项.本例选中 “ Include constant i

16、n equation选项在回归方程中保存常数项. “Missing Values框用于设置对缺失值的处理方法.其中各项为:* " Exclude cases listwise剔除所有含有缺失值的观测值.'"Exchude cases pairwise仅剔除参与统计分析计算的变量中含有缺失值的观测量."Replace with mean用变量的均值取代缺失值.本例选中 “ Exclude cases listwise.9提交执行在主对话框里单击“0K,提交执行,结果将显示在输出窗口中.主要结果见表2-2至表2-4.10结果分析主要结果:表2-2表2-2是回归

17、模型统计量:R是相关系数;R Square相关系数的平方,又称判定系数,判定线性回归的拟合程度:用来说明用自变量解释因变量变异的程度所占比例; Adjusted R Square调整后的判定系数;Std. Error of the Estimate估计标准误差.表2-3表ANOVA方差分析表血血1Sum 成 Sep ares 平方和If自由度Mean Squaxe 均方Fgig. 显著性水平1Regression 44. 15510-930.001aResidue 剩余 14.22111.384Total 总的 12L00315表2-3回归模型的方差分析表,F值为10.930,显著性概率是0.

18、001,说明回归极显著.表2-4表6-9 Coefficients 回归系数ModelUrstandardized Coefficients非标准化回归系Standardized CoefficientsI标准化回归系数£SigBStd. ErrorBeta P >1Cannant當黴*0.182442-4126960J42.166.133.900.3370.2452132631.145.27E降水量0.210224.244936369雨日0.60S2464652.473D31分析:建立回归模型:根据多元回归模型:| u -n- -|Y把表6-9中非标准化回归系数栏目中的“B列系数代入上式得预报方程:y =-0.182 + 0.142咒1 4- 0.245旳 +

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论