射频连接器用开槽插孔的可靠性设计与制造_第1页
射频连接器用开槽插孔的可靠性设计与制造_第2页
射频连接器用开槽插孔的可靠性设计与制造_第3页
射频连接器用开槽插孔的可靠性设计与制造_第4页
射频连接器用开槽插孔的可靠性设计与制造_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、射频连接器用开槽插孔的可靠性设计与制造中心议题:开槽插孔接触件设计 插孔接触件开槽设计 插孔接触件的制造 本文主要对射频同轴连接器用开槽插孔接触件的结构形式、常见的失效模式进行了简单论述;按悬臂梁对“指状”接触片进行建模分析,简单介绍了其强度设计步骤、开槽形式、简易收口方法所产生的缺陷以及应采用的合理的收口方法;介绍了开槽及收口等制造工艺环节中应注意的问题和方法。在射频同轴连接器中,插孔接触件的结构形式多种多样,但在某些方面的要求是基本相同的,如:插入力和拔出力、接触电阻以及机械寿命符合相关标准的规定等。使用最多的还是开槽插孔接触件。产品系列、规格、使用条件不同,开槽插孔接触件的结构、规格(内

2、、外径)、开槽数量、开槽宽度、开槽长度也不同。在结构上,开槽插孔接触件有直通形式(图1a)、锥形补偿形式(图1b)和“刷型”形式(图1c)等;在规格上,不同系列的射频同轴连接器,其插孔接触件规格基本不同;在开槽数量上,有2槽、4槽、6槽、8槽,还有3槽及其它开槽数。部分50军用射频同轴连接器的开槽插孔接触件的情况见表1。射频同轴连接器的品种很多,出现失效的状况也千差万别,但从可靠性的角度来看,很多失效的机理和模式是相同的。航天203所的吴秉钧老师进行了总结、归纳为:连接失效;反射失效;电接触失效;污染失效。而在射频同轴连接器的电接触失效中,开槽插孔接触件起着至关重要的作用,尤其是在微小型射频同

3、轴连接器中,射频同轴连接器的电接触失效大多数是由开槽插孔接触件结构、材料、工艺方法等不当或不过关而损坏引起的。开槽插孔接触件引起的产品失效及分析见表2。在射频同轴连接器中,尤其是小型、微小型高性能微波连接器中,开槽插孔接触件的地位举足轻重,一方面,插孔接触件的结构、外径尺寸与外接触件、绝缘介质一起,决定着射频同轴连接器的工作频率范围、阻抗、反射等主要电气性能指标;另一方面,插孔接触件的结构、开槽数量、开槽长度,又决定着插入力和拔出力、接触电阻、机械寿命等性能。开槽插孔接触件设计原理-接触片受力及变形分析插孔接触件开槽后,其“指状”接触片的受力和变形情况可按悬臂梁进行建模分析。下面就以开2槽的T

4、NC插孔接触件为例进行分析。截面形状及几何特性插孔接触件开槽后,要进行收口处理,与插针插合后,其“指状”接触片发生弹性变形,变形量为(见图4中的右半部分,虚线所示为未插合时的插孔的轮廓线),这样才能在接触部位产生正压力、形成可靠接触。截面形状,如图4中的左半部分所示,该截面的几何特性为:h从中性层到x轴的距离,单位为mm,可由公式(1)计算得到。J 惯性矩,单位为mm4,可按公式(2)进行计算。Z截面模量,单位为mm3,可按公式(3)进行计算。建模分析根据插孔接触件的结构及插合时的接触部位的不同,建立以下三种模型。模型1,一端固定,均布载荷(图5)。模型2,一端固定,另一端加载(图6)。模型

5、3,一端固定,中间加载(图7)。这三种模型的最大受力及变形情况如表3所示。模型2与模型3相比,变形段的长度较大(L>L-a)。这样,在端部位移相同的情况下,施力点的转角较小,且变形更均匀,有利于提高梁的强度。因此,在射频同轴连接器的实际应用中直通形式(图1a)或“刷型”形式(图1c)中的口部接触的情况,通常采用该种模型进行分析、计算和设计。在设计插孔接触件时,为了保证可靠性,重点关注以下几个方面。(1)确保指状接触部分的强度足够,即增大模型中梁的E和Z。可以通过选用性能优良的材料、增大指状接触部分的厚度和减小开槽宽度等来实现。例如,最典型的标准SMA射频同轴连接器,其开槽插孔接触件的指状

6、接触部分很薄(受结构尺寸所限),强度较差,往往是失效的主要模式。(2)注意设计和控制开槽的长度和数量。开槽的长度直接决定着模型中梁的长度;开槽的数量直接决定着梁的数量和梁的尺寸。(3)设计插孔接触件必须满足射频同轴连接器的电气性能要求。n “指状”接触片数量; 插孔与插针之间的摩擦系数; W“指状”接触片的端部应产生的正压力。(2)确定每个“指状”接触片的端部应产生的正压力(W )后,选择材料(同时还要考虑材料的传导性、工艺性等因素),根据选用材料的许用应力b ,确定每个“指状”接触片所能达到的最大正应力max,在确定最大正应力max时,应考虑安全系数,一般取23.5,即:b =(23.5)m

7、ax 。(3)确定最大正应力max后,根据公式(5),确定出单个“指状”接触片的截面模量Z 和开槽长度。(5)用计算得到的插孔接触件的内径、外径尺寸,验算能否实现射频同轴连接器的电气性能(阻抗是否为50、上限截止频率是否达到要求等),如果不能实现,则应从第二步开始重新选择材料或在第三步中重新确定接触片的截面模量Z 和开槽长度,或者同时改变。插孔接触件开槽设计“指状”接触片断裂是开槽插孔接触件最常见的失效形式,因此如何设计槽的结构、提高其疲劳强度是设计开槽结构的关键。对于大多数射频连接器生产厂家来说,通常将槽设计成平底式,如图9中的(a)所示,这种结构容易加工。一些人会认为该结构容易在槽底存在应

8、力集中点,容易断裂,而采用(b)或(c)所示的圆弧底形式的结构。从机械方面分析,(b)或(c)所示结构的疲劳强度是优于(a),但从工艺实现方面来看,(b)或 (c)对刀具、工艺方法的要求更高,尤其是超小型射频同轴连接器的插孔接触件。另外,对于50的空气介质同轴传输线,插孔接触件上开槽会对射频同轴连接器的阻抗、电压驻波比产生影响,所引起的特性阻抗偏差、电压驻波比可分别由公式(6)、(7)计算得到。f 频率,GHz;g 间隙宽度,mm;dg 间隙区域内导体的直径,mm;d 内导体的直径,mm;N 开槽数量;w 槽宽,mm。由公式(6)和(7)可见,开槽数量越多、槽宽越大,对射频同轴连接器的阻抗、电

9、压驻波比的影响越大,因此在确定开槽数量和宽度时,还要充分考虑这些影响,使其在规定的范围内。插孔接触件的制造开槽插孔接触件通常选用弹性及强度较好的锡磷青铜或铍青铜合金线材或棒材制造。选用锡磷青铜合金时,工序包括:加工外圆和内孔、开槽、收口、预插、进行低温(175185)稳定处理、电镀等;选用铍青铜合金时,插孔收口后要进行强化热处理(HV320HV360),才能充分发挥铍青铜材料的高弹性性能。开槽从电气性能来说,开槽宽度越小越有利于实现高的电气性能。但槽宽越小,加工难度越大,且开槽后的后处理(如去除毛刺)难度也越大,尤其是超小型连接器的插孔接触件。处理不好,往往是射频同轴连接器失效的原因之一。通常

10、的方法是采用锯片刀开槽,随着刀具技术和设备技术的发展,开槽宽度逐渐减小到0.15mm、0.10mm,甚至更窄。在开槽过程中,应注意的问题是保证开槽的对称度、直线度,以及毛刺的控制和去除,否则会严重降低“指状”接触片的强度,降低射频同轴连接器的使用寿命。由于插孔接触件通常用铍铜合金制造,在加工中容易产生毛刺,且难以去除,所以一些厂家采用电加工的方法进行加工。由于电加工对加工部位产生电化腐蚀,且内孔中残留的腐蚀物、冷却液等杂质不容易清除,往往会对后续的热处理、电镀(镀不上或附着力小易脱落)等产生不利影响。收口对于开槽插孔接触件,要采用机械方法将其“指状”接触片均匀地向中心收口,才能与插合的插针接触

11、件之间产生符合规定的分离力(接触压力)。精密收口是产品性能的关键因素,直接决定其接触性能和可靠性。2槽插孔接触件收口前、收口后、插合状态如图10所示。最佳的收口应是准确控制、形成椭圆形闭合,使插针、插孔接触表面平滑。插针必须在插入力较小的情况下插入,从而得到较好的电气性能和可靠性。正确收口为了消除简易收口方法引起的缺陷和隐患,应采用合理的收口装置和方法,使接触片的受力及变形均匀,如图11所示。建议根据应达到的收口后的直径,考虑弹性回弹等因素,设计制造圆锥形收口装置(见图12)或在机床上旋转收口(见图13)。在图12中,圆锥形收口装置的锥孔尺寸控制和插孔接触件的进入长度控制(针对不同类型的产品可通过多次试验积累得到)是非常重要的,直接决定着接触件的收口尺寸。当然圆锥形收口装置锥孔的表面应足够光滑,以免收口时损伤接触件表面。在图13中,插孔接触件的旋转速度、工具的轴向运动速度及径向进给速度、滚轮的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论