涂料中的纳米材料技术要点_第1页
涂料中的纳米材料技术要点_第2页
涂料中的纳米材料技术要点_第3页
涂料中的纳米材料技术要点_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、涂料中的纳米材料技术纳米氧化锌颗粒在涂料中的作用与盖底颜料相似。据报道,它还可用作抗菌剂和光稳定剂使用。纳米硫酸钡正在被推广成为适用于各种清漆的颜料分散稳定剂和功能性添加剂。纳米粘土是另一种无机纳米粒子。粘土(层状硅酸盐)和有机粘土在聚合物中的应用已被广泛研究。但加工条件和其它制备这种材料的状况限制了它们在涂料中应用,特别是在清漆中。但是,一种合成的锂铝硅酸盐粘土可被分散为纳米级粒子(比如Laponite ),其主要用途是作为流变改性剂。它作为涂料添加剂使用可改善涂料性能。氧化锌和硫化钡是另外两个应用于涂料领域的纳米颗粒的重要材料。纳米颗粒和纳米结构的原位生成生成无机粒子或在有机基材中生成纳米

2、相的最常用的方法是利用硅烷溶胶凝胶化学法(例如:四乙氧基硅烷,TEOS 。 TEOS勺水解、缩合可产生不同尺 寸的胶体硅颗粒,包括在碱性条件下的纳米颗粒,或在酸性条件下的交联块。控制反应条件,硅烷和有机分子形成含有二氧化硅纳米颗粒或纳米相的涂层。这种方法已投入实践操作已有超过15 年的商业化生产经验。通过溶胶- 凝胶制备的无机 /有机杂化涂料已经成为一个广泛研究的课题。溶胶 -凝胶制备有机/无机杂化涂料作为飞机铝合金底漆的替代品的可行性一直是研发活动的活跃领域。研究表明在飞机和外部建筑物应用方面可提高其耐光性。而改善聚碳酸酯和塑料等软性基材及钢制品的耐划伤性也一直是另一个研究重点。尝试开发用于

3、电子行业的低介电常数涂料是溶胶- 凝胶化学法应用的又一实例。可在表面活性剂的帮助下形成一层比二氧化硅本身介电常数更低的涂层。这一领域如今正是半导体行业关注的重点。纳米构型最后,我们将探讨涂料纳米构型的一些其它方法。而其中一个有趣的应用是模仿海豚的皮肤。目前已知海豚的皮肤具有纳米级别的细腻度,这有助于减少藤壶、管盘以及其他海洋生物附着在皮肤上。由于皮肤和海洋生物之间的接触面积减少从而导致附着力降低,而海豚一旦开始游泳,这些附着物又可以被海水冲刷掉。为了模拟这种纳米结构,使用两种通常不相容的聚合物(超枝化含氟聚合物和线性聚乙二醇),将两种聚合物混合并用于一块基材之上。由于聚合物相分离,它们被交联形

4、成一种纳米结构涂料,这种涂料拥有纳米级别的细腻程度。该领域的研发正是直接针对于发展无毒海洋涂料。另一个形成纳米级别表面实例的是聚丙烯。它可形成一种超疏水表面,其水接触角高达160°。这种表面在天线、自清洁交通信号灯等领域具有极高的应用价值,因为它可减少物体表面对于水和雪的亲和力。上述两种纳米构型涂料可作为降阻涂料用于海洋船只表面。最近报道的“荷叶效应”也是应用相似的机理达到自清洁的效果。总之,纳米技术为涂料改善其性能、添加新的功能特性提供了最广阔的可能性。虽然纳米材料对于涂料行业来说并不是一个全新的事物,但是在这方面的进展一直很有限,直到最近几年才有所突破。如今全球对纳米技术的关注度

5、与日俱增,这也势必对纳米材料技术在涂料行业的应用产生深远的影响。生成纳米复合材料或纳米构型涂料的方法包括加入预成型纳米颗粒、原位生成纳米颗粒或纳米相,以及其它纳米结构成型方法。加入预成型颗粒将纳米颗粒加入涂料中从而获得潜在的性能收益所面临的严峻考验就是:颗粒是否能达到纳米程度的分散。事实上,分散问题是这一领域更快速引进新产品的主要障碍之一。早期商业化生产纳米“二氧化钛” ( TiO2)的尝试是失败的,首先是粉末产生高度结块,其次颗粒在涂料中难以二次分散。一种可实现纳米级别分散的方法是使用有效地研磨手段,比如球磨。想要实现有效分散,要求研磨介质要远远小于用于分散传统颗粒的介质。这种高表面积的出现

6、对分散剂的要求就更为严苛。而由于纳米颗粒的高分散而导致的高粘度又引发了另一个丞待解决的问题。大表面积由于界面张力(例如电荷粘滞力)的增加从而提高了粘度,这便限制了纳米颗粒添加结合的数量。因此适当的增加表面官能性是解决分散性和粘度上升的另一个有效方法。另外,为了促进分散,我们还可以将颗粒表面官能化,从而使纳米颗粒拥有共价键,使其和有机树脂基材相连。全球大多数原材料供应商实验室对于纳米颗粒的研发主要都集中在纳米颗粒的官能化和纳米颗粒的表面处理两个方面。这些努力促使用于涂料应用领域的纳米颗粒的类型不断增加,并进一步实现其商业化发展。一家欧洲豪华汽车制造商宣布在其清漆中使用纳米颗粒(称为陶瓷颗粒)。这

7、种涂料据称是世界上第一款结合纳米粒子实现性能增强的汽车清漆。据报道,这些粒子直径小于20 纳米,在140发生交联。相比于传统清漆,这种新涂料体系据说在进行汽车冲洗测试后仍可保持40%的光泽度。另一种商业化应用越来越多的纳米颗粒是纳米二氧化钛。通常所使用的颗粒尺寸约为200 纳米,应用于涂料中时可起到优化光散射和增强涂料遮盖力的作用。纯二氧化钛表面在紫外光辐射和潮湿环境中可以催化降解有机化合物。当暴露在紫外光和潮湿环境中时,这种涂料的表层会降解,成为“白垩粉尘化。”经过一场暴风雨将粉尘彻底清洗,从而显露出一个清洁的表面。利用二氧化钛的光催化特性可制造出杀菌、自清洁表面。这一特性最早的应用是在那些

8、照明灯具的透明涂层上,而这些照明灯具通常安装在难以清洁的地点,比如交通隧道中。最近,越来越多的“自清洁”技术得以推广,比如使用纳米二氧化钛涂层的建筑外窗。二氧化钛的光催化活性的另一用途是制备防雾表面。将纳米二氧化钛薄层涂于玻璃等物体表面,可使表面在紫外线和较小潮湿环境中具有高极性。在这种玻璃表面,微量的水分将自动地形成薄薄的一层,而不是形成致使玻璃雾化的微小水滴。利用这一特性而制造的防雾玻璃可应用于汽车车窗。二氧化钛吸收紫外光这一特性是其应用于防晒乳液中的主要原因。而纳米二氧化钛因其易于清洁而需求不断增加。在涂料应用领域,纳米二氧化钛正作为一种受阻胺类UV稳定剂的替代品而进行研发。研究表明,纳

9、米级别的二氧化钛颗粒(6-92 纳米级别金红石和锐钛型二氧化钛)在水性丙烯酸和异氰酸酯基丙烯酸涂料中作为紫外光吸收剂,它的性能相当或优于同类受阻胺类光稳定剂。氧化锌和硫化钡是另外两个应用于涂料领域的纳米颗粒的重要材料。纳米氧化锌颗粒在涂料中的作用与盖底颜料相似。据报道,它还可用作抗菌剂和光稳定剂使用。纳米硫酸钡正在被推广成为适用于各种清漆的颜料分散稳定剂和功能性添加剂。纳米粘土是另一种无机纳米粒子。粘土(层状硅酸盐)和有机粘土在聚合物中的应用已被广泛研究。但加工条件和其它制备这种材料的状况限制了它们在涂料中应用,特别是在清漆中。但是,一种合成的锂铝硅酸盐粘土可被分散为纳米级粒子(比如Lapon

10、ite ),其主要用途是作为流变改性剂。据报道,它作为涂料添加剂使用可改善涂料性能。纳米构型我们将探讨涂料纳米构型的一些其它方法。而其中一个有趣的应用是模仿海豚的皮肤。目前已知海豚的皮肤具有纳米级别的细腻度,这有助于减少藤壶、管盘以及其他海洋生物附着在皮肤上。由于皮肤和海洋生物之间的接触面积减少从而导致附着力降低,而海豚一旦开始游泳,这些附着物又可以被海水冲刷掉。为了模拟这种纳米结构,使用两种通常不相容的聚合物(超枝化含氟聚合物和线性聚乙二醇),将两种聚合物混合并用于一块基材之上。由于聚合物相分离,它们被交联形成一种纳米结构涂料,这种涂料拥有纳米级别的细腻程度。该领域的研发正是直接针对于发展无

11、毒海洋涂料。另一个形成纳米级别表面实例的是聚丙烯。它可形成一种超疏水表面,其水接触角高达160°。这种表面在天线、自清洁交通信号灯等领域具有极高的应用价值,因为它可减少物体表面对于水和雪的亲和力。上述两种纳米构型涂料可作为降阻涂料用于海洋船只表面。最近报道的“荷叶效应”也是应用相似的机理达到自清洁的效果。纳米技术为涂料改善其性能、添加新的功能特性提供了最广阔的可能性。虽然纳米材料对于涂料行业来说并不是一个全新的事物,但是在这方面的进展一直很有限,直到最近几年才有所突破。如今全球对纳米技术的关注度与日俱增,这也势必对纳米材料技术在涂料行业的应用产生深远的影响。纳米颗粒和纳米结构的原位生成生成无机粒子或在有机基材中生成纳米相的最常用的方法是利用硅烷溶胶凝胶化学法(例如:四乙氧基硅烷,TEOS 。 TEOS勺水解、缩合可产生不同尺 寸的胶体硅颗粒,包括在碱性条件下的纳米颗粒,或在酸性条件下的交联块。控制反应条件,硅烷和有机分子形成含有二氧化硅纳米颗粒或纳米相的涂层。这种方法已投入实践操作已有超过15 年的商业化生产经验。通过溶胶- 凝胶制备的无机/有机杂化涂料已经成为一个广泛研究的课题。溶胶-凝胶制备有机/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论