南京市2016届高三年级第三次模拟考试数学参考答案_第1页
南京市2016届高三年级第三次模拟考试数学参考答案_第2页
南京市2016届高三年级第三次模拟考试数学参考答案_第3页
南京市2016届高三年级第三次模拟考试数学参考答案_第4页
南京市2016届高三年级第三次模拟考试数学参考答案_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、南京市2016届高三年级第三次模拟考试数学参考答案及评分标准说明:1本解答给出的解法供参考如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则2对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分3解答右端所注分数,表示考生正确做到这一步应得的累加分数4只给整数分数,填空题不给中间分数一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)15 23i 30.02 4 58 67

2、4 8 94 101,3 11 123 13(1,2) 14 二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)15(本小题满分14分)解:(1)因为m·n3bcosB,所以acosCccosA3bcosB由正弦定理,得sinAcosCsinCcosA3sinBcosB,·····················

3、······································3分所以sin(AC)3sinBcosB,所以sinB3sinBcosB因为B是ABC的内角,所以sinB0,所以cosB··

4、;··················································

5、;7分(2)因为a,b,c成等比数列,所以b2ac由正弦定理,得sin2BsinA·sinC ·········································&#

6、183;·····································9分因为cosB,B是ABC的内角,所以sinB········&#

7、183;·············································11分又···

8、3;·················································

9、3;···········14分16(本小题满分14分)证明:(1)因为ABAC,点D为BC中点,所以ADBC ·······························

10、83;·················2分 因为ABCA1B1C1 是直三棱柱,所以BB1平面ABC 因为ADÌ平面ABC,所以BB1AD ·······················&

11、#183;···························4分 因为BCBB1B,BCÌ平面BCC1B1,BB1Ì平面BCC1B1, 所以AD平面BCC1B1 因为ADÌ平面ADC1,所以平面ADC1平面BCC1B1 ······&#

12、183;······································6分(2)连结A1C,交AC1于O,连结OD,所以O为AC1中点 ······

13、;·······································8分因为A1B平面ADC1,A1BÌ平面A1BC,平面ADC1平面A1BCOD,所以A1BOD ··

14、················································12分因为O为AC1中点

15、,所以D为BC中点,所以1 ···············································

16、3;··················14分17(本小题满分14分)解:(1)由题意,得,1,解得a26,b23所以椭圆的方程为1 ························

17、;··········································2分(2)解法一 椭圆C的右焦点F(,0)设切线方程为yk(x),即kxyk0,所以,解得k&

18、#177;,所以切线方程为y±(x)······························4分由方程组解得或 所以点P,Q的坐标分别为(,),(,),所以PQ ··········&#

19、183;······················6分因为O到直线PQ的距离为,所以OPQ的面积为 因为椭圆的对称性,当切线方程为y(x)时,OPQ的面积也为综上所述,OPQ的面积为 ················&

20、#183;················8分解法二 椭圆C的右焦点F(,0)设切线方程为yk(x),即kxyk0,所以,解得k±,所以切线方程为y±(x)······················

21、·········4分把切线方程 y(x)代入椭圆C的方程,消去y得5x28x60设P(x1,y1) ,Q(x2,y2),则有x1x2 由椭圆定义可得,PQPFFQ2ae( x1x2)2××·····················6分因为O到直线PQ的距离为,所以OPQ的面积为

22、 因为椭圆的对称性,当切线方程为y(x)时,所以OPQ的面积为综上所述,OPQ的面积为 ·································8分解法一:(i)若直线PQ的斜率不存在,则直线PQ的方程为x或x当x时,P (,),Q(,)因为·0,所

23、以OPOQ当x时,同理可得OPOQ ·································10分(ii) 若直线PQ的斜率存在,设直线PQ的方程为ykxm,即kxym0因为直线与圆相切,所以,即m22k22将直线PQ方程代入椭圆方程,得(12k2) x24k

24、mx2m260.设P(x1,y1) ,Q(x2,y2),则有x1x2,x1x2·································12分因为·x1x2y1y2x1x2(kx1m)(kx2m)(1k2)x1x2km(x1x2)m2(1k2)

25、5;km×()m2将m22k22代入上式可得·0,所以OPOQ综上所述,OPOQ ·····································14分解法二:设切点T(x0,y0),则其切线方程为x

26、0xy0y20,且xy2 (i)当y00时,则直线PQ的直线方程为x或x当x时,P (,),Q(,)因为·0,所以OPOQ当x时,同理可得OPOQ ··································10分(ii) 当y00时,由方程

27、组消去y得(2xy)x28x0x86y0设P(x1,y1) ,Q(x2,y2),则有x1x2,x1x2 ······························12分所以·x1x2y1y2x1x2因为xy2,代入上式可得·0,所以OPOQ综上所述,OPOQ ·

28、83;···································14分18(本小题满分16分)解:(1)由题意,可得AD12千米 由题可知|, ········

29、;······································2分解得v ···········

30、;···································4分(2) 解法一:经过t小时,甲、乙之间的距离的平方为f(t)由于先乙到达D地,故2,即v8 ·······

31、;·········································6分当0vt5,即0t时,f(t)(6t)2(vt)22×6t×vt×cos

32、DAB(v2v36) t2因为v2v360,所以当t时,f(t)取最大值,所以(v2v36)×()225,解得v ·······································

33、3;·9分当5vt13,即t时,f(t)(vt16t)29(v6) 2 (t)29因为v8,所以,(v6) 20,所以当t时,f(t)取最大值,所以(v6) 2 ()2925,解得v ··································

34、;······13分当13vt16, t时,f(t)(126t)2(16vt)2,因为126t0,16vt0,所以当f(t)在(,)递减,所以当t时,f(t)取最大值,(126×)2(16v×)225,解得v 因为v8,所以 8v ························

35、·····················16分解法二:设经过t小时,甲、乙之间的距离的平方为f(t)由于先乙到达D地,故2,即v8 ·····················&#

36、183;···························6分以A点为原点,AD为x轴建立直角坐标系, 当0vt5时,f(t)(vt6t)2(vt)2由于(vt6t)2(vt)225,所以(v6)2(v)2对任意0t都成立,所以(v6)2(v)2v2,解得v ·····

37、83;·········································9分当5vt13时,f(t)(vt16t)232由于(vt16t)23225,所以4vt16t4对任意

38、t都成立,即对任意t都成立,所以解得v ··············································

39、3;13分当13vt16即t,此时f (t)(126t)2(16vt)2由及知:8v,于是0126t12124,又因为016vt3,所以f (t)(126t)2(16vt)2423225恒成立综上可知8v ·································

40、;············16分19(本小题满分16分)解:(1)当m1时,f(x)x3x21f (x)3x22xx(3x2)由f (x)0,解得x0或x所以函数f(x)的减区间是(,0)和(,) ·······················

41、83;··············2分(2)依题意m0因为f(x)x3mx2m,所以f (x)3x22mxx(3x2m)由f (x)0,得x或x0 当0x时,f (x)0,所以f(x)在(0,)上为增函数;当xm时,f (x)0,所以f(x)在(,m)上为减函数;所以,f(x)极大值f()m3m ·············

42、83;···································4分当m3mm,即m,ymaxm3m···········

43、83;···································6分当m3mm,即0m时,ymaxm综上,ymax ··········&

44、#183;·······································8分(3)设两切点的横坐标分别是x1,x2则函数f(x)在这两点的切线的方程分别为y(x13mx12m)(3x122mx1

45、)(xx1),y(x23mx22m)(3x222mx2)(xx2) ···········································10分将(2,t

46、)代入两条切线方程,得t(x13mx12m)(3x122mx1)(2x1),t(x23mx22m)(3x222mx2)(2x2)因为函数f(x)图象上有且仅有两个不同的切点,所以方程t(x3mx2m)(3x22mx)(2x)有且仅有不相等的两个实根···········12分整理得t2x3(6m)x24mxm设h(x)2x3(6m)x24mxm,h (x)6x22(6m)x4m2(3xm)(x2)当m6时,h (x)6(x2)20,所以h(x)单调递增,显然不成立当m6时, h (x)

47、0,解得x2或x列表可判断单调性,可得当x2或x,h(x)取得极值分别为h(2)3m8,或h()m3m2m 要使得关于x的方程t2x3(6m)x24mxm有且仅有两个不相等的实根,则t3m8,或tm3m2m ·······························14分因为t0,所以

48、3m80,(*),或m3m2m0(*)解(*),得m,解(*),得m93或m93因为m0,所以m的范围为(0,93,) ··································16分20(本小题满分16分)解:(1)因为3b1,2b2,b3成等差数

49、列, 所以4b23b1b3,即4×3(2ad), 解得, ····································4分 由an1bnan2,得anda(n1)d,整理得 ···

50、3;····································6分解得n, ············

51、83;···························8分由于1且0 因此存在唯一的正整数n,使得an1bnan2 ·················&#

52、183;·······················10分(2)因为,所以 设f(n),n2,nN*则f(n1)f(n),因为q2,n2,所以(q1)n22(q2)n3n2310,所以f(n1)f(n)0,即f(n1)f(n),即f(n)单调递增··········&

53、#183;·······················12分所以当r2时,tr2,则f(t)f(r),即,这与互相矛盾所以r1,即 ···················

54、3;···············14分若t3,则f(t)f(3) ·,即,与相矛盾于是t2,所以,即3q25q50又q2,所以q ·························

55、3;·················16分南京市2016届高三年级第三次模拟考试 数学附加题参考答案及评分标准 2016.05 说明:1本解答给出的解法供参考如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则2对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不

56、再给分3解答右端所注分数,表示考生正确做到这一步应得的累加分数4只给整数分数,填空题不给中间分数21【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共计20分请在答卷卡指定区域内作答解答应写出文字说明、证明过程或演算步骤A选修41:几何证明选讲证明:(1)连接AB因为PA是半圆O的切线,所以PACABC因为BC是圆O的直径,所以ABAC又因为AHBC,所以CAHABC,所以PACCAH,所以AC是PAH的平分线 ··············&

57、#183;····························5分(2)因为H是OC中点,半圆O的半径为2,所以BH3,CH1又因为AHBC,所以AH2BH·HC3,所以AH在RtAHC中,AH,CH1,所以CAH30°由(1)可得PAH2CAH60°,所以PA2由PA是半圆O的切线,

58、所以PA2PC·PB,所以PC·(PCBC)(2)212,所以PC2 ··········································

59、83;10分B选修42:矩阵与变换解:设曲线C上的任意一点P(x,y),P在矩阵A对应的变换下得到点Q(x,y)则 , 即x2yx,xy,所以xy,y ·····································&#

60、183;··········5分代入x22xy2y21,得y22y·2()21,即x2y22,所以曲线C1的方程为x2y22 ······························&#

61、183;············10分C选修44:坐标系与参数方程解:M的极坐标为(1,),故直角坐标为M(0,1),且P(2cos,sin),所以PM,sin1,1 ·················5分当sin时,PMmax,此时cos±所以,PM的最大值是,此时点P的坐标是(±,)&

62、#183;······························10分D选修45:不等式选讲 解:函数定义域为0,4,且f(x)0 由柯西不等式得52()2()()(5··)2,········

63、··············5分 即27×4(5··)2,所以56 当且仅当5,即x时,取等号所以,函数f(x)5的最大值为6 ··································10分【必做题】第22题、第23题,每题10分,共计20分 22(本小题满分10分)解:(1)记“X是奇数”为事件A,能组成的三位数的个数是48 ········&#

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论