自适应控制作业_第1页
自适应控制作业_第2页
自适应控制作业_第3页
自适应控制作业_第4页
自适应控制作业_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一、根据题意已知,飞机座舱环控制系统中,自适应系数:也即。 对应为K=0.92,a2=7200,a1=380,a0=1。(1)应用MIT方案设计自适应,对应的框图如下: 自适应算法设计自适应规律:K=0.92 a1=380 a2=7200 a0=1 b0=1从框图可以看出自适应的目的就是通过加入一个可调增益Kc,通过调整Kc,使得当t时偏差e趋近于0,使系统和参考模型相适应。选定性能泛函:J=因e是Kc的函数。调整Kc沿J负梯度方向调整且负梯度方向是下降最快的方向。从而可以得出:。又因为,所以即可得到而其中存在不可测项,因此进行下面的分析系统与模型输出的偏差: 再引入微分算子: 得到:令 称自

2、适应增益,则按MIT自适应规则,可调增益自适应数字模型可归纳为下列一组方程误差方程: 模型方程: 自适应算法: 因为参考输入r(t)=A=10的阶跃信号,设N(p)=1 这样系统才稳定,代入a1,a2,A值,当t趋于无穷时Ym=0.92A=9.2又因为Kv变化范围是0.6到1.2之间,因此可求得0<<0.00047806MATLAB仿真图如下:R=10,选择Kv=1.2, =0.0002 R=10,选择Kv=1.2, =0.0005 R=10,选择Kv=0.6, =0.0002 R=10,选择Kv=0.6, =0.0005由图可以看出,当Kv=0.6, =0.0002的时候,输出波

3、形比较好。下面观察Kv=0.6, =0.0002固定,输入R变化的影响。R=15,选择Kv=0.6, =0.0002 R=16,选择Kv=0.6, =0.0002R=15时,波形趋于稳定已经需要很多时间,R>15时,波形基本不能趋于稳定了,而对于>=0.0005时,系统也趋于不稳定。(2)框图与(1)中相同,运用李雅普诺夫理论可知即令状态空间表达式为在状态空间选用Lyapunov函数: 则系统一定渐近稳定若以上负定, 负定, 也即为: 框图如下:设一阶系统则,可知T=1,K=2,A=10 1 0 0劳斯判据则:>0,>0得>0仿真图形如下R=10,选择Kv=0.6

4、, =0.0002 R=15,选择Kv=0.6, =0.0005 R=10,选择Kv=0.6, =0.005由上几幅仿真图来看,当>0逐渐增大时,稳定性降低了。二、= = = =假设已调好,此时参数为引用设 根据迹的性质 选择 则同理可调系统的方程式为:其系统仿真图形如下图所示,仿真波形分别为,输出误差e,和的波形。通过波形可以看出,其自适应规律应用误差很小。三、 m=2 时 带入公式通过系数相等可以得出 则可以得到 的控制规律 系统输出的最小方差所以当m=2时 四、根据题意, ,将获得的实验数据输入matlab中,程序如下:A=0.6200 12.000 5.2000 0.4000 1

5、4.2000 6.1000 0.4200 14.6000 0.3200 0.8200 12.1000 8.3000 0.6600 10.8000 5.1000 0.7200 8.2000 7.9000 0.3800 13.0000 4.2000 0.5200 10.5000 8.0000 0.4500 8.8000 3.9000 0.6900 17.0000 5.5000 0.5500 14.2000 3.8000 0.3600 12.8000 6.2000 ;B=51.6 49.9 48.5 50.6 49.7 48.8 42.6 45.9 37.8 64.8 53.4 45.3'C

6、=inv(A'*A)*A'*B得出结果C = 29.5903 2.44660.4597即为最小二乘法确定的模型参数五、在此我将对一实际系统应用RBF神经网络进行系统辨识,模拟其输出曲线。close allclearecho onclcpauseclc%定义训练样本矢量P=-1:0.05:1;randn('seed',192736547);T=sin(2*pi*P)+0.1*randn(size(P);pause%绘制样本数据点plot(P,T,'+');hold on;%绘制部含噪声的正弦曲线plot(P,sin(2*pi*P),':&#

7、39;);echo onclcpause%closeclcdisp('1.动量批梯度下降算法traingdm');disp('2.贝叶斯正规则算法trainbr');choice=input('请选择训练算法(1,2):');figure(gcf);if(choice=1) echo on clc %建立一个前向神经网络 net=newff(minmax(P),28,1,'tansig','purelin','traingdm'); pause clc net.trainParam.show=50;

8、 net.trainParam.lr=0.04; net.trainParam.mc=0.9; net.trainParam.epochs=8000; net.trainParam.goal=1e-3; net=init(net); pause clcelseif(choice=2) echo on clc %建立一个前向神经网络 net=newff(minmax(P),20,1,'tansig','purelin','trainbr'); pause clc net.trainParam.show=10 net.trainParam.epochs=5000; randn('seed',192736547); net=init(net); pause clcend%调用相应算法训练BP网络net,tr=train(net,P,T);pauseclc%对BP网络进行仿真A=sim(net,P)E=T-A;MSE=mse(E);pauseclc%绘制结果曲线close all;plot(P,A,P,T,'+',P,sin(2*pi*P),':');pausecl

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论