AT89C51外文翻译 外文文献 英文文献_第1页
AT89C51外文翻译 外文文献 英文文献_第2页
AT89C51外文翻译 外文文献 英文文献_第3页
AT89C51外文翻译 外文文献 英文文献_第4页
AT89C51外文翻译 外文文献 英文文献_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、西安交通大学城市学院本科生毕业设计(论文)at89c51外文翻译descriptionthe at89c51 is a low-power, high-performance cmos 8-bit microcomputer with 4k bytes of flash programmable and erasable read only memory (perom). the device is manufactured using atmels high density nonvolatile memory technology and is compatible with the in

2、dustry standard mcs-51 instruction-set and pinout. the on-chip flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. by combining a versatile 8-bit cpu with flash on a monolithic chip, the atmel at89c51 is a powerful microcomputer which prov

3、ides a highly flexible and cost effective solution to many embedded control applications.features compatible with mcs-51 products 4k bytes of in-system reprogrammable flash memory endurance: 1,000 write/erase cycles fully static operation: 0 hz to 24 mhz three-level program memory lock 128 x 8-bit i

4、nternal ram 32 programmable i/o lines two 16-bit timer/counters six interrupt sources programmable serial channel low power idle and power down modesthe at89c51 provides the following standard features: 4k bytes of flash,128 bytes of ram, 32 i/o lines, two 16-bit timer/counters, a five vector two-le

5、vel interrupt architecture, a full duplex serial port, on-chip oscillator and clock circuitry. in addition, the at89c51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. the idle mode stops the cpu while allowing the ram, time

6、r/counters, serial port and interrupt system to continue functioning. the power-down mode saves the ram contents but freezes the oscillator disabling all other chip functions until the next hardware reset.vccsupply voltage.gndground.port 0port 0 is an 8-bit open-drain bi-directional i/o port. as an

7、output port, each pin can sink eight ttl inputs. when 1s are written to port 0 pins, the pins can be used as high-impedance inputs. port 0 may also be configured to be the multiplexed low-order address/data bus during accesses to external program and data memory. in this mode p0 has internal pullups

8、.port 0 also receives the code bytes during flash programming, and outputs the code bytes during program verification. external pullups are required during program verification. port 1port 1 is an 8-bit bi-directional i/o port with internal pullups.the port 1 output buffers can sink/source four ttl

9、inputs.when 1s are written to port 1 pins they are pulled high by the internal pullups and can be used as inputs. as inputs,port 1 pins that are externally being pulled low will source current (iil) because of the internal pullups.port 1 also receives the low-order address bytes during flash program

10、ming and verification. port 2port 2 is an 8-bit bi-directional i/o port with internal pullups.the port 2 output buffers can sink/source four ttl inputs.when 1s are written to port 2 pins they are pulled high by the internal pullups and can be used as inputs. as inputs,port 2 pins that are externally

11、 being pulled low will source current (iil) because of the internal pullups. port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (movx dptr). in this application, it uses strong internal pullups wh

12、en emitting 1s. during accesses to external data memory that use 8-bit addresses (movx ri), port 2 emits the contents of the p2 special function register. port 2 also receives the high-order address bits and some control signals during flash programming and verification.port 3port 3 is an 8-bit bi-d

13、irectional i/o port with internal pullups. the port 3 output buffers can sink/source four ttl inputs.when 1s are written to port 3 pins they are pulled high by the internal pullups and can be used as inputs. as inputs,port 3 pins that are externally being pulled low will source current (iil) because

14、 of the pullups. port 3 also serves the functions of various special features of the at89c51 as listed below:port 3 also receives some control signals for flash programming and verification. rstreset input. a high on this pin for two machine cycles while the oscillator is running resets the device.

15、ale/progaddress latch enable output pulse for latching the low byte of the address during accesses to external memory. this pin is also the program pulse input (prog) during flash programming. in normal operation ale is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for

16、external timing or clocking purposes. note, however, that one ale pulse is skipped during each access to external datamemory. if desired, ale operation can be disabled by setting bit 0 of sfr location 8eh. with the bit set, ale is active only during a movx or movc instruction. otherwise, the pin is

17、weakly pulled high. setting the ale-disable bit has no effect if the microcontroller is in external execution mode.psenprogram store enable is the read strobe to external program memory. when the at89c51 is executing code from external program memory, psen is activated twice each machine cycle, exce

18、pt that two psen activations are skipped during each access to external data memory. ea/vppexternal access enable. ea must be strapped to gnd in order to enable the device to fetch code from external program memory locations starting at 0000h up to ffffh.note, however, that if lock bit 1 is programm

19、ed, ea will be internally latched on reset. ea should be strapped to vcc for internal program executions.this pin also receives the 12-volt programming enable voltage (vpp) during flash programming, for parts that require 12-volt vpp.xtal1input to the inverting oscillator amplifier and input to the

20、internal clock operating circuit. xtal2output from the inverting oscillator amplifier.oscillator characteristics xtal1 and xtal2 are the input and output, respectively,of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in figure 1. either a quartz crystal or

21、 ceramic resonator may be used. to drive the device from an external clock source, xtal2 should be left unconnected while xtal1 is driven as shown in figure 2.there are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a div

22、ide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.idle mode in idle mode, the cpu puts itself to sleep while all the on-chip peripherals remain active. the mode is invoked by software. the content of the on-chip ram and all the special functions

23、registers remain unchanged during this mode. the idle mode can be terminated by any enabled interrupt or by a hardware reset. it should be noted that when idle is terminated by a hard ware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before t

24、he internal reset algorithm takes control. on-chip hardware inhibits access to internal ram in this event, but access to the port pins is not inhibited. to eliminate the possibility of an unexpected write to a port pin when idle is terminated by reset, the instruction following the one that invokes

25、idle should not be one that writes to a port pin or to external memory.figure 1. oscillator connectionsnote: c1, c2 = 30 pf ± 10 pf for crystals= 40 pf ± 10 pf for ceramic resonatorsfigure 2. external clock drive configurationpower-down mode in the power-down mode, the oscillator is stoppe

26、d, and the instruction that invokes power-down is the last instruction executed. the on-chip ram and special function registers retain their values until the power-down mode is terminated. the only exit from power-down is a hardware reset. reset redefines the sfrs but does not change the on-chip ram

27、. the reset should not be activated before vcc is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.program memory lock bits on the chip are three lock bits which can be left unprogrammed (u) or can be programmed (p) to obtain

28、 the additional features listed in the table below.when lock bit 1 is programmed, the logic level at the ea pin is sampled and latched during reset. if the device is powered up without a reset, the latch initializes to a random value, and holds that value until reset is activated. it is necessary th

29、at the latched value of ea be in agreement with the current logic level at that pin in order for the device to function properly.programming the flash the at89c51 is normally shipped with the on-chip flash memory array in the erased state (that is, contents = ffh)and ready to be programmed. the prog

30、ramming interface accepts either a high-voltage (12-volt) or a low-voltage (vcc) program enable signal. the low-voltage programming mode provides a convenient way to program the at89c51 inside the users system, while the high-voltage programming mode is compatible with conventional thirdparty flash

31、or eprom programmers.the at89c51 is shipped with either the high-voltage or low-voltage programming mode enabled. the respective top-side marking and device signature codes are listed in the following table.the at89c51 code memory array is programmed byte-by-byte in either programming mode. to progr

32、am any non-blank byte in the on-chip flash memory, the entire memory must be erased using the chip erase mode. programming algorithm: before programming the at89c51, the address, data and control signals should be set up according to the flash programming mode table and figures 3 and 4. to program t

33、he at89c51, take the following steps.1. input the desired memory location on the address lines.2. input the appropriate data byte on the data lines. 3. activate the correct combination of control signals.4. raise ea/vpp to 12v for the high-voltage programming mode. 5. pulse ale/prog once to program

34、a byte in the flash array or the lock bits. the byte-write cycle is self-timedand typically takes no more than 1.5 ms. repeat steps 1 through 5, changing the address and data for the entire array or until the end of the object file is reached.data polling: the at89c51 features data polling to indica

35、te the end of a write cycle. during a write cycle, anattempted read of the last byte written will result in the complement of the written datum on po.7. once the write cycle has been completed, true data are valid on all outputs, and the next cycle may begin. data polling may begin any time after a

36、write cycle has been initiated. ready/busy: the progress of byte programming can also be monitored by the rdy/bsy output signal. p3.4 is pulled low after ale goes high during programming to indicate busy. p3.4 is pulled high again when programming is done to indicate ready.program verify: if lock bi

37、ts lb1 and lb2 have not been programmed, the programmed code data can be read back via the address and data lines for verification. the lock bits cannot be verified directly. verification of the lock bits is achieved by observing that their features are enabled. chip erase: the entire flash array is

38、 erased electrically by using the proper combination of control signals and by holding ale/prog low for 10 ms. the code array is written with all “1”s. the chip erase operation must be executed before the code memory can be re-programmed.reading the signature bytes: the signature bytes are read by t

39、he same procedure as a normal verification of locations 030h, 031h, and 032h, except that p3.6 and p3.7 must be pulled to a logic low. the values returned are as follows. (030h) = 1eh indicates manufactured by atmel (031h) = 51h indicates 89c51 (032h) = ffh indicates 12v programming (032h) = 05h ind

40、icates 5v programmingprogramming interfaceevery code byte in the flash array can be written and the entire array can be erased by using the appropriate combination of control signals. the write operation cycle is selftimed and once initiated, will automatically time itself to completion.all major pr

41、ogramming vendors offer worldwide support for the atmel microcontroller series. please contact your local programming vendor for the appropriate software revision. flash programming and verification waveforms - high-voltage mode (vpp = 12v)flash programming and verification waveforms - low-voltage m

42、ode (vpp = 5v)flash programming and verification characteristics ta = 0°c to 70°c, vcc = 5.0 ± 10%absolute maximum ratings*notice: stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. this is a stress rating only and functional operat

43、ion of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability.dc characteristicsta = -40°c to 85°c, vcc = 5.0v 

44、77; 20% (unless otherwise noted)notes: 1. under steady state (non-transient) conditions, iol must be externally limited as follows:maximum iol per port pin: 10 mamaximum iol per 8-bit port: port 0: 26 maports 1, 2, 3: 15 mamaximum total iol for all output pins: 71 maif iol exceeds the test condition

45、, vol may exceed the related specification. pins are not guaranteed to sink current greater than the listed test conditions.2. minimum vcc for power-down is 2v.ac characteristicsunder operating conditions, load capacitance for port 0, ale/prog, and psen = 100 pf; load capacitance for all other outpu

46、ts = 80 pf.external program and data memory characteristicsexternal program memory read cycleexternal data memory read cycleexternal data memory write cycleexternal clock drive waveformsexternal clock driveserial port timing: shift register mode test conditions(vcc = 5.0 v ± 20%; load capacitan

47、ce = 80 pf)shift register mode timing waveformsac testing input/output waveforms(1)note: 1. ac inputs during testing are driven at vcc - 0.5v for a logic 1 and 0.45v for a logic 0. timing measurements are made at vih min. for a logic 1 and vil max. for a logic 0.float waveforms(1)note: 1. for timing

48、 purposes, a port pin is no longer floating when a 100mv change from load voltage occurs. a port pin begins to float when 100mv change from the loaded voh/vol level occurs.at89c51中文原文at89c51是美国atmel公司生产的低电压,高性能cmos8位单片机,片内含4k bytes的可反复擦写的只读程序存储器(perom)和128 bytes的随机存取数据存储器(ram),器件采用atmel公司的高密度、非易失性存储

49、技术生产,兼容标准mcs-51指令系统,片内置通用8位中央处理器(cpu)和flash存储单元,功能强大at89c51单片机可为您提供许多高性价比的应用场合,可灵活应用于各种控制领域。主要性能参数:·与mcs-51产品指令系统完全兼容·4k字节可重擦写flash闪速存储器·1000次擦写周期·全静态操作:0hz24mhz·三级加密程序存储器·128×8字节内部ram·32个可编程io口线·2个16位定时计数器·6个中断源·可编程串行uart通道·低功耗空闲和掉电模式功能特性概

50、述:at89c51 提供以下标准功能:4k 字节flash 闪速存储器,128字节内部ram,32 个io 口线,两个16位定时计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,at89c51可降至0hz的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止cpu的工作,但允许ram,定时计数器,串行通信口及中断系统继续工作。掉电方式保存ram中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。 引脚功能说明·vcc:电源电压·gnd:地·p0 口:p0 口是一组8 位漏极开路型双向io 口,也即地址数据总线

51、复用口。作为输出口用时,每位能吸收电流的方式驱动8个ttl逻辑门电路,对端口写“1”可作为高阻抗输入端用。在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。在fiash编程时,p0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。·p1口:p1是一个带内部上拉电阻的8位双向io口,p1的输出缓冲级可驱动(吸收或输出电流)4个ttl逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(iil)。fias

52、h编程和程序校验期间,p1接收低8位地址。·p2口:p2是一个带有内部上拉电阻的8位双向io口,p2的输出缓冲级可驱动(吸收或输出电流)4个ttl逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(iil)。在访问外部程序存储器或16位地址的外部数据存储器(例如执行movxdptr指令)时,p2口送出高8位地址数据。在访问8 位地址的外部数据存储器(如执行movxri 指令)时,p2 口线上的内容(也即特殊功能寄存器(sfr)区中r2寄存器的内容),在整个访问期间不改变。flas

53、h编程或校验时,p2亦接收高位地址和其它控制信号。·p3口:p3口是一组带有内部上拉电阻的8 位双向io 口。p3 口输出缓冲级可驱动(吸收或输出电流)4 个ttl逻辑门电路。对p3 口写入“1”时,它们被内部上拉电阻拉高并可作为输入端口。作输入端时,被外部拉低的p3 口将用上拉电阻输出电流(iil)。p3口除了作为一般的io口线外,更重要的用途是它的第二功能,如下表所示:p3口还接收一些用于flash闪速存储器编程和程序校验的控制信号。·rst:复位输入。当振荡器工作时,rst引脚出现两个机器周期以上高电平将使单片机复位。·aleprog: 当访问外部程序存储器

54、或数据存储器时,ale(地址锁存允许)输出脉冲用于锁存地址的低8位字节。即使不访问外部存储器,ale 仍以时钟振荡频率的l6 输出固定的正脉冲信号,因此它可对外输出时钟或用于定时目的。要注意的是:每当访问外部数据存储器时将跳过一个ale脉冲。对flash存储器编程期间,该引脚还用于输入编程脉冲(prog)。如有必要,可通过对特殊功能寄存器(sfr)区中的8eh单元的do 位置位,可禁止ale 操作。该位置位后,只有一条movx和movc指令ale才会被激活。此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ale无效。·psen:程序储存允许(psen)输出是外部程序存储器的读选

55、通信号,当at89c51 由外部程序存储器取指令(或数据)时,每个机器周期两次psen有效,即输出两个脉冲。在此期间,当访问外部数据存储器,这两次有效的psen信号不出现。·eavpp:外部访问允许。欲使cpu仅访问外部程序存储器(地址为0000hffffh),ea端必须保持低电平(接地)。需注意的是:如果加密位lb1被编程,复位时内部会锁存ea端状态。如ea端为高电平(接vcc端),cpu则执行内部程序存储器中的指令。flash存储器编程时,该引脚加上+12v的编程允许电源vpp,当然这必须是该器件是使用12v编程电压vpp。·xtal1:振荡器反相放大器的及内部时钟发生

56、器的输入端。·xtal2:振荡器反相放大器的输出端。·时钟振荡器:at89c5l 中有一个用于构成内部振荡器的高增益反相放大器,引脚xtal1 和xtal2 分别是该放大器的输入端和输出端。这个放大器与作为反馈元件的片外石英晶体或陶瓷谐振器一起构成自激振荡器,振荡电路参见图5。外接石英晶体(或陶瓷谐振器)及电容c1、c2接在放大器的反馈回路中构成并联振荡电路。对外接电容c1、c2虽然没有十分严格的要求,但电容容量的大小会轻微影响振荡频率的高低、振荡器工作的稳定性、起振的难易程序及温度稳定性,如果使用石英晶体,我们推荐电容使用30pf±10pf,而如使用陶瓷谐振器建

57、议选择40pf±10f。用户也可以采用外部时钟。采用外部时钟的电路如图5右图所示。这种情况下,外部时钟脉冲接到xtal1端,即内部时钟发生器的输入端,xtal2则悬空。由于外部时钟信号是通过一个2分频触发器后作为内部时钟信号的,所以对外部时钟信号的占空比没有特殊要求,但最小高电平持续时间和最大的低电平持续时间应符合产品技术条件的要求。·空闲节电模式:at89c51 有两种可用软件编程的省电模式,它们是空闲模式和掉电工作模式。这两种方式是控制专用寄存器pcon(即电源控制寄存器)中的pd(pcon.1)和idl(pcon.0)位来实现的。pd 是掉电模式,当pd=1 时,激活

58、掉电工作模式,单片机进入掉电工作状态。idl是空闲等待方式,当idl=1,激活空闲工作模式,单片机进入睡眠状态。如需同时进入两种工作模式,即pd和idl同时为1,则先激活掉电模式。在空闲工作模式状态,cpu保持睡眠状态而所有片内的外设仍保持激活状态,这种方式由软件产生。此时,片内ram和所有特殊功能寄存器的内容保持不变。空闲模式可由任何允许的中断请求或硬件复位终止。终止空闲工作模式的方法有两种,其一是任何一条被允许中断的事件被激活,idl(pcon.0)被硬件清除,即刻终止空闲工作模式。程序会首先响应中断,进入中断服务程序,执行完中断服务程序并紧随reti(中断返回)指令后,下一条要执行的指令就是使单片机进入空闲模式那条指令后面的一条指令。其二是通过硬件复位也可将空闲工作模式终止。需要注意的是,当由硬件复位来终止空闲工作模式时,cpu 通常是从激活空闲模式那条指令的下一条指令开始继续执行程序的,要完成内部复位操作,硬件复位脉冲要保持两个机器周期(24个时钟周期)有效,在这种情况下,内部禁止cpu访问片内ram,而允许访问其它端口。为了避免可能对端口产生意外写入,激活空闲模式的那条指令后一条指令不应是一条对端口或外部存储器的写入指令。·掉电模式:在掉电模式下,振荡器停止工作,进入掉电模式的指令是最后一条被执行的指令

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论