版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、极限分析与滑移线理论河海大学岩土工程研究所卢廷浩概 述 对于土体,滑移线理论、极限分析理论与力的极限平衡理论同属极限状态理论的范畴,都是求土体达到极限状态时解答的理论方法。这些理论方法都是假定分析对象服从库仑材料破坏准则,求解时不考虑材料到达极限状态的过程,即不考虑材料的具体应力应变关系,从而求得土体达到极限状态时的解答,但他们各自求解问题的视角和方法不同。关于力的极限平衡理论 力的极限平衡理论假定土体为理想刚塑性体,依据于经典静力学中刚体平衡理论推求极限状态解答,简称为极限平衡法。该方法最为人们所熟悉,其突出优点是简单,应用广泛。例如,经典土压力计算理论,假定滑动面的土坡稳定安全系数计算,地
2、基极限承载力计算等。 关于极限分析理论 极限分析理论假定土体为弹性理想塑性体或刚塑性体,强度包线为直线且服从正交流动规则的标准库仑材料。当作用于土体上的荷载达到某一数值并保持不变时,土体会发生“无限”塑性流动,则认为土体处于极限状态,所对应的荷载称为极限荷载。极限分析理论就是应用弹性理想塑性体或刚塑性体的普遍定理上限定理(求极限荷载的上限解)和下限定理(求极限荷载的下限解)求解极限荷载的一种分析方法,称为极限分析法。关于滑移线理论 土力学中的滑移线理论是从经典塑性力学的基础上发展起来的。假定土体为理想刚塑性体,强度包线为直线且服从正交流动规则的标准库仑材料。滑移线理论是基于平面应变状态的土体内
3、当达到“无限”塑性流动时,塑性区内的应力和应变速度的偏微分方程是双曲线这一事实,应用特征线理论求解平面应变问题极限解的一种方法,称为滑移线法。 正交流动规则正交流动规则 塑性应变率之间的关系(图).1FppnnFtg 3131FFpp0cos2)sin1 ()sin1 (31CF或0tgCFn屈服函数屈服函数.ppntg 1 sin()1 sin42tg 两种表达同单剪中能量耗散率ppnnD fnctg代入.pDc得单元体能量耗散率单元体pn总能量耗散率.intcospDD l hcl hclv .cospvh是A点的速度v在剪切面上的速度分量材料总能量耗散率能量耗散率计算 薄变形层上的刚体滑
4、动能量耗散率 以对数螺线为周界的变形锲体的能量耗散率 (推导)上、下限定理静力容许的应力场静力容许的应力场 设有物体V,其表面A,面力 和体力 已知。若在此物体上,设定一组应力场,满足下列条件,则称为静力容许应力场。 在体积V内满足平衡方程,即 在边界上满足边界条件,即 在体积V内不违反屈服条件,即 由定义可知,物体处于极限状态时,其真实的应力场必定是静力容许的应力场;但静力容许应力场不一定是极限状态时真实的应力场。iif上、下限定理机动容许的位移速率场机动容许的位移速率场 ui ui 在物体V上,若设定一组位移速率场,满足以下条件,为机动容许的位移速率场。 在体积V内满足几何方程,即 则称)
5、(21*,*,*ijjiijuu在边界Su上满足位移边界条件,或速度边界条件,并使外力做正功。由上述定义可知,物体于极限状态时,其真实的位移速率场必定是机动容许的位移速率场;但机动容许的位移速率场不一定是极限状态时真实的位移速率场。上、下限定理虚功方程与虚功率方程虚功方程与虚功率方程 虚功原理表明:对于一个连续的变形体,任意一组静力容许的应力场和任意一组机动容许位移场,外力的虚功等于内力的虚功。 同理虚功率原理可表示为:对于任意一组静力容许应力场和任意一组机动容许的位移速率场,外力的功率等于物体内虚变形功率。 如果物体内部存在速度间断时,其虚功率方程可表示为: 以上几个定理的证明可参考土力学有
6、关书本,这里从略。根据虚功率方程可以证明极限分析中两个重要的定理,即上下限定理。dvdAuFdAuTijAvijViiii*0*dsvtgdvdvuFdAuTtsnijAvijviiii )(*0*vtdvdvuFdAuTijAvijViiii*0*式中,S速度间断面; 速度间断面两侧切向 速度的变化。上、下限定理上、下限定理下限定理下限定理: 在所有与静力容许的应力场满足 相对应的荷载中,极限荷载最大。 (证明) Fij() 0上、下限定理上、下限定理上限定理: 在所有的机动容许的塑性变形位移速率场相对应的荷载中,外功功率等于物体内能耗散率所对应的极限荷载为最小。 (证明)下限定理证明下限定
7、理证明 证:设 为真实的应力场,对应的表面力为Ti, 为真实的位移速率场,由几何方程求得真实应变率为 ,真实速度场中可能存在速度间断面SL,其上的切向速度跃度为 ;在Su上给定速度为 ,在ST上给定表面力为 ,给定的体力为Fi。 ij uiijvtiu iT下限定理证明下限定理证明由虚功率方程得 又设另一静力容许的应力场,对应的表面力为,由虚功率方程得 LtsLnijvijisiviidsvtgtdvdsuTdvuF )(00LsLtvijijsiiviidsvCdvdsuTdvuF下限定理证明下限定理证明上述两式相减得 0()iiisTT u dsLtsLnjivijijisiidsvtgC
8、dvdsuTT )()()(00由Drucker公式得到ijijij)(00 由于Ctgn )(tnvtgC同时 0,即剪应力做正功率知0, 得证。0()iiisTT u ds上限定理证明上限定理证明 上限定理:在所有的机动容许的塑性变形位移速率场相对应的荷载中,极限荷载为最小。 证:设 为物体达到极限状态的真实应力场,其对应的表面力为Ti, 为真实位移速率场,由几何方程求得的应变率为 ,真实速度场中可能有速度间断面SL,其上的速度切向跃值为 ;体力为Fi。 ij uiijvt上限定理证明上限定理证明 另设一机动容许的位移速率场 ,对应的应变率为 ,应变速度场可能有间断面,其上的切向速度为 。
9、虚功率方程得*ui*ij*vt* )(LvtvSLnijijsiiiidsvtgdvdsuTdvuF()*ijijvij由于由于0 上限定理证明上限定理证明又tgnC,则有* )(*LtLtSndsvCdsvtgLvLStijijsiiiidsvCdsuTdvuFL*后两式代入第一式,有显然只有当*uuii时,上式等号成立。上限定理得到证明。Fij()0事实上,不妨设Fi,Ti 就是真正的极限荷载,对应的静力许可应力场 满足左边是外功功率,右边是能量耗散率,这就证明满足外功功率能量耗散率塑性变形时的荷载最小。上、下限定理应用举例 地基极限承载力 下限解 上限解上、下限定理应用举例 垂直边坡临界
10、高度 (无裂缝的垂直边坡) 已知上限解外功功率 B C H 刚体 刚体 v t A 图75 竖直边坡平动机制 )cos(tan212tvHw外内能消散率 ttvHCwcoscos内,ttc垂直边坡临界高度根据内外ww)cos(sincos2tttCH根据求导 0/ddH2/4/tcr有得上限解)245tan(4ttCH垂直边坡临界高度根据 下限解 x 0 x H yy )(Hyx )(Hyyx y yy 图79 竖直边坡静力场 区域的莫尔圆 n 区域坡底处的莫尔圆 图710 静力场中的莫尔圆 有裂缝的垂直边坡 上限解 H 刚体 刚体 nH t B A 图77 不能抗拉的竖直边坡 )cos()1
11、 (tan5 . 022tvnHw外ttvnHCwcos)1 (cos内)cos(sincos)1 (2tttnCH)245tan(4)1 (ttCnH上、下限定理应用举例地基承载力(下限界)zz1区2区3区zzHHHHq1、3区2区uczHzq上、下限定理应用举例地基承载力(上限界)机动许可速度场(附图:几种情况讨论) 圆弧滑动面45o斜面斜面60o滑移线概念 基本假定 基本方程 平衡方程为 sinyxxxycosxyzxz22sin22xxxz22zz()(+c ctg )土体屈服条件为土体屈服条件为水 平 线滑移线概念 应力分量表达 当土体达到塑性极限平衡时(达到塑性屈服),土体单元将一
12、对剪破面,剪破面与大主应力的夹角为 。设大主应力 与 轴的夹角为 ,则三个应力分量 可分别表达为 式中 称为平均法向引用应力 421x,xzxz (1 sincos2 )xc ctg (1 sincos2 )zc ctg sinsin2xz2xz()+c ctg滑移线在平面应变问题中,平面上任一点度有两个正交主应力,将各点主应力方向连续地连接起来就是主应力迹线。当土体处于屈服状态时,每一点都存在一对剪破面,即面和面,将平面上各点剪破面连续地连接起来就可以得到两族曲线,称为滑移线(或滑动线。滑移线上一点的切线就是该点的滑动面方向。 图 6.2 族 曲 线133 族 曲 线 -1滑移线与滑移线方程
13、 线和 线的微分方程为 ()dztgdx()dztgdx图6.2族曲线133族曲线- 1应力平衡方程的特征线方程 特征线方程 推导 特征线方程组 极限平衡方程改写 (1 sincos2 )sinsin22sin (sin2cos2)sinxzxzsinsin2(1 sincos2 )2sin (cos2sin2)cosxzxz特征线方程推导 上式是关于 、 的一阶拟线形偏微分方程组,直接求解这个偏微分方程组极其困难。由于两族滑移线自己的夹角是 为此可以将方程改写:以 乘第一个方程;以 乘第二个方程,然后相加,得22()422sin()-cos()特征线方程推导空间曲面方程以 为变量空间曲面方程
14、 sin()cos()2cos()2xcoscoscos()0tgtgxzz , x z, 特征线方程推导 在xoz平面内一定存在某曲线 ,该曲线上 和 正好满足方程;沿该线 、 可以表达为( , )( , )x zx zz=z(x)求全微分(过程略)特征线方程推导空间曲面方程 sin()sin()2xcossin()cos()cos()cos()2cossin()cos()tgxdxdztgzzdxdz2sin()cos()cosdtgddxdz 应力间断线应力间断线推导t1t212tttn1n2n切向正应力间断应力间断线应力间断线推导2221zc22( ,)21( ,) 图7.2特征线方程
15、推导 当右端项分子分母同时为0,左端的导数值不定, 称为特征线。特征线方程组如下z=z(x)()dztgdx2sin()cos()cosdtgddxdz特征线方程组的差分解法差分方程组111222()()()()mmmmzztgxxzztgxx11111222222()sin()()cos()()cos2()sin()()cos()()cosmmmmmmmmtgxxzztgxxzz 提高差分解精度 依据问题定性作出较密的滑移线网格;逐点进行一次差分计算后,再在前一次差分计算结果的基础上进行逐次迭代计算 ,以1212121211111111(),(),(),(),(),(),(),()22222
16、222mimimimimimimimixxxxzzzz12121212,x xz z 分别代替 进行下一次迭代 差分计算看似繁琐,但应用计算机采取编程计算就极简单而且快捷 边界已知值换算 由 换算成p,, 221()sinnttpc ctgp 图 8 . 1c ctg 1土体单元极限平衡状态 土体单元极限平衡状态 (推导) c ctg 图 8.22 222边界已知值换算推导推导1()pO NO N或NO Q O Q2()O QN -或 OQN1边界上M点的应力状态用莫尔圆表示,由图可见(引用应力)(引用应力对法线的倾角)(平均法向引用应力)(方向对边界倾角的2倍) 边界已知值换算推导点 和点
17、对应着两种应力状态,即被动状态和主动状态。 在上式分别合成一个式子,有( )NNN22m 1()2msinsin()sin2sin()pp N2(21)m 1()22msinsinsin2sin()pp 1(1)()42mKK1K 处,或按正弦定律 在处, 或按正弦定律 图 8 . 3边界已知值换算由 换算成p, 或,nt 当差分计算到未知边界后,一般应完成这种换算,以便于设计使用。换算可采用如下两种方法之一进行。 p,nt(1 sincos2 )nc ctg sinsin2tp,方法1:利用式,反求,方法2:先由莫尔圆上直接求出然后求出再求求出边值问题 第一种边值问题(柯西问题) 第二种边值
18、问题(古尔斯问题,黎曼问题)图8.5图8.4特征曲线A zxoooA zx光滑边界o 1A 2o 2A 2边值问题 第三种边值问题(混合问题) 第四种边值问题图8.7图8.6o光滑边界光滑边界zxoA a1zxA o 特征线光滑边界A 3地基极限承载力 边界条件 已知条件有:地基土性参数 ; 边荷载 ;以及基底荷载之倾角 (由上部结构荷载水平与垂直分量确定)。 目的是:求基底面极限承载力及其分布 , , cqdc ctg 地基极限承载力 滑移线网格与节点图 10.1112 12A地基极限承载力 计算表格(步骤) 分区解答 极限荷载、实际荷载土坡稳定 坡顶极限承载力A图 11.1土坡稳定 极限边坡轮廓线01族族设计A图1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度艺人经纪保密合同
- 二零二四年建筑工程设计咨询服务合同
- 2024版河道边坡整治工程合同范本
- 二零二四年度教育培训合同(含课程设置和师资配备)
- 二零二四年项目合作合同合作内容与责任分配
- 2024年度金融服务合同标的为000万元贷款
- 大连智能锁2024年度技术升级服务合同
- 北京城市学院《现代仪器分析》2021-2022学年第一学期期末试卷
- 北京城市学院《口译实训》2023-2024学年第一学期期末试卷
- 北京城市学院《雕刻基础(浮雕)》2021-2022学年第一学期期末试卷
- 2024-2030年铝型材行业市场深度调研及前景趋势与投资战略研究报告
- 2024-2030年辣椒种植行业市场深度分析及发展策略研究报告
- 通信工程施工方案
- 初中英语研修方案
- 化工厂拆除施工方案
- 海南自贸港优化营商环境条例7大亮点解读课件
- 中国邮政储蓄银行2024年下半年社会招聘高频难、易错点500题模拟试题附带答案详解
- 2024年湖南省永州市宁远县自来水公司招聘26人历年高频难、易错点500题模拟试题附带答案详解
- 《中华人民共和国道路交通安全法实施条例》知识专题培训
- 部编人教版2022-2023学年度第一学期四年级道德与法治上册期末测试卷及答案
- 统编版(2024)语文七年级上册 第10课 往事依依 公开课一等奖创新教案
评论
0/150
提交评论