


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、例2、在直角坐标平面内,圆O的半径为5,圆心o的坐标为(1 4) 试判断占:八、圆的基本性质一、知识点梳理知识点一:圆的定义及有关概念1圆的定义:平面内到定点的距离等于定长的所有点组成的图形叫做圆。2、有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆 ;弦心距;等圆、同圆、同心圆。圆上任意两点间的部分叫做圆弧,简称弧。连接圆上任意两点间的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。在同圆或等圆中,能够重合的两条弧叫做等弧。知识点二:平面内点与圆的位置关系:r表示圆的半径,d表示同一平面内点到圆心的距离, 则有 点在圆外; 点在圆上; 点在圆内。例1、如图,在RtAABC中,直角边AB 3,
2、 BC 4,点E, F分别是BC,AC的中点,以点A为圆心,AB的长为半径画圆,则点 E在圆A的F在圆A的点P(3, 1)与圆o的位置关系.例3、下列说法中,正确的是 。(1)直径是弦,但弦不一定是直径;(2)半圆是弧,但弧不一定是直径;(3)半径相等的两个半圆是等弧;(4) 一条弦把圆分成两段弧中,至少有一段优弧。例4、有下列四个命题:(1)直径相等的两个圆是等圆; (2)长度相等的两条弧是等弧; (3)圆中最 大的弦是通过圆心的弦;(4) 一条弦把圆分成两条弧, 这两条弧不可能是等弧, 其中真命题是 知识点三:垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。推论:平分弦( 的直径垂
3、直于这条弦,并且平分弦所对的弧。平分弧的直径垂直平分弧所对的弦。垂径定理最重要的应用是通过勾股定理来解决有关弦、半径、弦心距等问题例1 :下列语句中正确的是 。(1)相等的圆心角所对的弧相等;(2)相等的弧所对的弦相等;(3)平分弦的直径垂直于弦;(4)弦的垂直平分线必过圆心。例2、过O j内一点M的最长弦长为10cm,最短弦长为8cm,那么OM的长为((A) 3cm(B)6cm(C) J cm(D) 9cm例3、如图所示,以0为圆心的两个同心圆中,小圆的弦AB的延长线交大圆于 C若AB=6, BG=1,则与圆环的面积是例4、在半径为5厘米的圆内有两条互相平行的弦,一条弦长为8厘米,另一条弦长
4、C为6厘米,则两弦之间的距离为 .7厘米或1厘米例5、如图,矩形ABC与与圆心在 人吐的0 0交于点G B、F、DE=2cm 则 EF= cm .例6、如图所示,是一个直径为650mm的圆柱形输油管的横截面,求油面的最大深度。例7、如图,O O的直径AB垂直弦CD于M且M是半径0B的中点,例8、工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是距离为8mm如图所示,则这个小圆孔的宽口AB的长度为mmrn-I例9、把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=GD=16厘米,则球的半径为厘米知识点四:1、圆心角定理:在同圆或等圆中,相等的圆心角所对的相等,所对的相等。
5、2、圆周角定理:一条弧所对的圆周角等于它所对的圆周角的一半。同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。;90°的圆周角所对的弦是例1、下图中BOD的度数是()0A、550B 、110C 、 1250D 150半圆(或直径)所对的圆周角是例2、已知:如图,AB、DE是O O的直径,AC/ DE,交O O于点C,求证:Be = Ce .3i2OB例3、如图,已知O O的弦AB CD相交于点E,弧AC的度数为60°,弧BD的度数为100°,则/ AEC等于()A. 60 °B . 100° C . 80° D .
6、 130°例4、如图所示,A B、C、D是圆上的点, C 30 , B 40,则1 度.知识点五:扇形的弧长及面积公式1、 半径为R, n°的圆心角所对弧长I的计算公式:1=。2、 半径为R,圆心角为n0的扇形面积的计算公式:S扇形二= (I是扇形的弧长)例1、如图,有一块边长为6 cm的正三角形 ABC木块,点P是边CA延长线上的一点,在A P之间拉一细绳,绳长AP为15 cm.握住点P,拉直细绳,把它紧紧缠绕在三角形 ABC木块上(缠绕时木块不动),则点P运8, AD6,将矩形ABCD在直线I上按顺时针方向不滑动的每秒转动90°,转动3秒后停止,则顶点经过的路线长为 例3、如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为 4m的 半圆,其边缘 AB = CD=20m,点E在CD上,CE = 2m,一滑板爱好者从 A点滑到E点,则他滑行的最短距离约为.例4、如图,e A,e B,e C,e D,e E的半径都是1,顺次连结五边形求图中五个扇形的面积之和(阴影部分)为 。ABCDE例5、如图,小丽自己动手做了一顶圆锥形的圣诞帽,母线长是缠一根漂亮的丝带,从 A出发绕帽子侧面一周,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制作瑜伽合同范本模板
- 2025年移动通信终端设备及零部件项目规划申请报告
- 2025年核磁共振岩心测试仪项目规划申请报告模范
- 2024福建福州市两江四岸客运有限公司招聘1人笔试参考题库附带答案详解
- 《茎和叶》教学设计-2023-2024学年科学四年级下册教科版
- 2025年离子及射线检测、分析仪器项目提案报告
- 2025年网络及通信协议处理软件项目申请报告模板
- 2025年制浆和造纸专用设备项目申请报告
- 2024浙江温州市平阳县兴阳控股集团有限公司下属子公司招聘编外劳务派遣人员2人(第二批)笔试参考题库附带答案详解
- 《第五章 第5节 显微镜和望远镜》教学设计思-2023-2024学年初中物理人教版八年级上册
- 航拍中国优秀课件
- 《做自己的心理医生 现代人的心理困惑和自我疗愈策略》读书笔记思维导图PPT模板下载
- 小学音乐组集体备课计划
- 电力需求侧自测题4科
- 稿件修改说明(模板)
- 血液透析安全注射临床实践专家共识解读
- GB/T 41873-2022塑料聚醚醚酮(PEEK)树脂
- SB/T 10940-2012商用制冰机
- GB/T 25945-2010铝土矿取样程序
- GB/T 16604-2017涤纶工业长丝
- 2023年教师资格证考试历年小学综合素质写作题及范文
评论
0/150
提交评论