版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第十一章第十一章 动动 量量 矩矩 定定 理理11-1 11-1 质点和质点系的动量矩质点和质点系的动量矩1 1质点的动量矩质点的动量矩对点对点 O O 的动量矩的动量矩()OMmvrmv对对 z z 轴的动量矩轴的动量矩()()zOxyMmvMmv代数量代数量, ,从从 z z 轴正向看轴正向看, ,逆时针为正逆时针为正, ,顺时针为负顺时针为负. .vmr)( vmMO)( vmMz()()OzzMmvMmv1()nOOiiiLMmv 1()nzziiiLMm v 2 2质点系的动量矩质点系的动量矩 对点的动量矩对点的动量矩 对轴的动量矩对轴的动量矩O zzLLOxyzLL iL jL k
2、 即即 1 1 刚体平移刚体平移()zzCLM mv()OOCLM mv二者关系二者关系2 2 刚体绕定轴转动刚体绕定轴转动iiiiizzrvmvmML)(2iiiiirmrrm2iizrmJ 转动惯量转动惯量zzJL dd()()ddOMmvrmvttdd()ddrmvrmvtt 11-2 11-2 动量矩定理动量矩定理 1 1质点的动量矩定理质点的动量矩定理设设O O为定点为定点, ,有有d()( )dOOMmvMFtFv0 质点对某定点的动量矩对时间的质点对某定点的动量矩对时间的一阶导数一阶导数, ,等于作用力对同一点的矩等于作用力对同一点的矩. .质点的动量矩定理质点的动量矩定理d()
3、( )dxxMmvMFtd()( )dyyMmvMFtd()( )dzzMmvMFt投影式投影式:ddd()()dddOOi iOi iLMmvMmvttt(e)d()dOOiLMFt 质点系对某定点质点系对某定点O的动量矩对的动量矩对时间的导数时间的导数,等于作用于质点系的等于作用于质点系的外力对于同一点的矩的矢量和外力对于同一点的矩的矢量和.(i)(e)d()()()dOiiOiOiMmvMFMFt(i)(e)d()()()dOi iOiOiMmvMFMFt2.2.质点系的动量矩定理质点系的动量矩定理0质点系的动量矩定理质点系的动量矩定理(e)d()dxxiLM Ft(e)d()dyyiL
4、MFt 投影式投影式: :(e)d()dzziLMFt 问题:内力能否改蜕变问题:内力能否改蜕变 点系的动量矩?点系的动量矩?3 3动量矩守恒定律动量矩守恒定律假设假设 那么那么 常量。常量。(e)()0zMFzL 有心力:力作用线一直经过某固定点有心力:力作用线一直经过某固定点, , 该点称力心该点称力心. .( )0OMF ()M mvrmv 常矢量常矢量假设假设 (e)()0OMFOL 那么那么 常矢量常矢量, ,面积速度定理:面积速度定理:质点在有心力作用下其面积速度守恒质点在有心力作用下其面积速度守恒. .(1) (1) 与与 必在一固定平面内必在一固定平面内, ,即点即点M M的运
5、动轨迹是平面曲线的运动轨迹是平面曲线. .rvd(2)drrmvrmbt常量ddrrt即即 常量常量d2drrAddAt因此因此, , 常量常量面积速度面积速度思索:谁先到达顶部?思索:谁先到达顶部?(e)sinOMMmgRRmgMmvRJtsindd22sinmRJmgRMRa 知:知: , ,小车不计摩擦小车不计摩擦. .,MJRma求求: :小车的加速度小车的加速度 . .RvmJLO解解: :Rvatvdd由由 , ,得得例例11-111-1知:知: , , , , , , , , , , ,不计摩擦不计摩擦. .mOJ1m2m1r2r求求: :1 1NF 2O 处约束力处约束力 3绳
6、索张力绳索张力 ,1TF2TF例例11-211-2)(222211rmrmJO(e)1 12 2()()OMFm rm r g2222112211)(ddrmrmJgrmrmtO 由由 ,得得(e)d()dOOLMFt 222111rvmrvmJLOO解:解:(1)(1) 2 2由质心运动定理由质心运动定理CyammmgmmmF)()(2121NNF212211212211)(mmmrmrmmmmamammymyaiiiCCy 1111T11rmamFgm)(11T1rgmF)()(221121NrmrmgmmmF 3 3 研讨研讨1m22222T2rmamgmF)(22T2rgmF2m4 4
7、 研讨研讨求:剪断绳后求:剪断绳后, , 角时的角时的 . .知:两小球质量皆为知:两小球质量皆为 , ,初始角速度初始角速度 。m0例例11-311-3020221maamaLz2)sin(22lamLz时时, ,00 时时, ,202)sin(laa12zzLL解:解: 11-3 11-3 刚体绕定轴的转动微分方程刚体绕定轴的转动微分方程12,nF FF自动力自动力: :d()()()dizzizNJMFMFt ()ziMF d()dzziJMFt 即即:( )zzJMF 或或22d( )dzzJMFt 或或转动微分方程约束力约束力: :21NN,FF知:物理摆复摆,知:物理摆复摆, 。求
8、:微小摆动的周期求:微小摆动的周期 。aJmO,例例11-411-422dsindOJmgat 解:解:sin微小摆动时,微小摆动时,mgatJO22dd0dd22OJmgat即:即:)sin(tJmgaOO通解为通解为 称角振幅,称角振幅, 称初相位,由初始条件确定称初相位,由初始条件确定. .OmgaJTO2周期周期求:制动所需时间求:制动所需时间 . .t知:知: ,动滑动摩擦因数,动滑动摩擦因数 。RFJNO,0f例例11-511-500N0ddtOJfF R t0NOJtfF RNddOJFRf F Rt解:解:1111RFMJt2222MRFJt2122112211iJJiMM21
9、121221,MMRRiJJ1知:知: 。 求:求: 。解:解:ttFF 121221RRi因因 , ,得,得例例11-611-621nziiiJm r 11-4 11-4 刚体对轴的转动惯量刚体对轴的转动惯量 1. 1. 简单外形物体的转动惯量计算简单外形物体的转动惯量计算(1)(1)均质细直杆对一端的转动惯量均质细直杆对一端的转动惯量 3d320lxxJlllz231mlJzlml由由 ,得,得420(2d)24ROAARJrr r222mRmRRmJiiz2 2均质薄圆环对中心轴的转动惯均质薄圆环对中心轴的转动惯量量2diiiAmr r3 3均质圆板对中心轴的转动惯均质圆板对中心轴的转动
10、惯量量2AmR式中:式中:221mRJO 或或2. 2. 回转半径惯性半径回转半径惯性半径 mJzz2zzmJ或或2CzzJJmd3 3平行轴定理平行轴定理Czdzz 式中式中 轴为过质心且与轴为过质心且与 轴平行的轴,轴平行的轴, 为为Cz与与 轴之间的间隔。轴之间的间隔。即:刚体对于任一轴的转动惯量,等于刚体对于经过即:刚体对于任一轴的转动惯量,等于刚体对于经过质心并与该轴平行的轴的转动惯量,加上刚体的质量质心并与该轴平行的轴的转动惯量,加上刚体的质量与两轴间间隔平方的乘积与两轴间间隔平方的乘积. .2211()CziJm xy )(222yxmrmJiiz)(2121dyxmiiiimd
11、ymdyxm2121212)(证明:证明:2CzzJJmd04 4组合法组合法OJ 求:求: .ld知:杆长为知:杆长为 质量为质量为 ,圆盘半径为,圆盘半径为 ,质量为,质量为 . .1m2m盘杆OOOJJJ231mlJO杆2222)2()2(21dlmdmJO盘)83(222ldldm)83(3122221ldldmlmJO解:解:21JJJz2222112121RmRm 解:解:222mR l211mR l其中其中2212 ()l RRm由由 ,得,得)(212221RRmJz44121 ()2zJl RR222212121 ()()2l RRRR21,RRm知:知: 。zJ 求求 :
12、. .5 5实验法实验法思索:如下图复摆如何确定对转轴的转动惯量?思索:如下图复摆如何确定对转轴的转动惯量?将曲柄悬挂在轴将曲柄悬挂在轴 O O上,作微幅摆动上,作微幅摆动. .mglJT2由由lm,TJ其中其中 知知, , 可测得,从而求得可测得,从而求得 . .6. 6. 查表法查表法均质物体的转动惯量均质物体的转动惯量薄壁圆薄壁圆筒筒细直杆细直杆体积体积惯性半径惯性半径转动惯量转动惯量简简 图图物体的物体的外形外形212lmJCz23lmJz32lCz3lz2mRJzRzRlh2薄壁空薄壁空心球心球空心圆空心圆柱柱圆柱圆柱)3(1221222lRmJJmRJyxZ)3(121222lRR
13、yxzlR2)(222rRmJz)(2122rRz)(22rRl232mRJzRz32Rh23圆环圆环圆锥体圆锥体实心球实心球225zJmRRz52334R2223103(4)80zxyJmrJJmrl)4(80310322lrryxz23r l223()4zJm Rr2243rRz222 r R矩形薄矩形薄板板长方体长方体椭圆形椭圆形薄板薄板2222()444zyymJabmJamJb222122babayxzabh222222()12()12()12zyymJabmJacmJbc)(121)(121)(121222222cbcabayxzabc2222()121212zyymJabmJam
14、Jbbabayxz289. 0289. 0)(12122abh11-5 11-5 质点系相对于质心的动量矩定理质点系相对于质心的动量矩定理1 1对质心的动量矩对质心的动量矩CCiiiiiLMmvrmvCiiirLrmviCirvvvCiiCiiirLrmvrmv( )0iiCiiCrmvm rvxyz x y zCCrOimiriririivmr?0()OCiiLrrmv)CiiiirmvrmvCvmCLOCCCLrmvL eddddOCCCiiLrmvLrFtt2 2 相对质心的动量矩定理相对质心的动量矩定理 eeCiiirFrFddddddCCCCCrLmvrmvtttxyz x y zC
15、CrOimirirCv0( )eiF eddCiiLrFt ed()dCCiLMFt质点系相对于质心的动量矩定理质点系相对于质心的动量矩定理 质点系相对于质心的动量矩对质点系相对于质心的动量矩对时间的导数,等于作用于质点系的时间的导数,等于作用于质点系的外力对质心的主矩外力对质心的主矩. .思索:如何实现卫星姿态控制?思索:如何实现卫星姿态控制?动量矩守恒定律实例动量矩守恒定律实例航天器中反作用轮姿航天器中反作用轮姿态控制系统表示简图态控制系统表示简图例例11-711-7知:均质圆盘质量为知:均质圆盘质量为m,半径为,半径为R,沿地面纯滚动,角速度,沿地面纯滚动,角速度 为为 。求:圆盘对求:
16、圆盘对A、C、P三点的动量矩。三点的动量矩。CAPCAP解:解:点点C C为质心为质心22mRJLCC点点P P为瞬心为瞬心232mRJLPP或或2321222mRmRmRLRmvLCCP2) 12(212222222mRmRmRLRmvLCCA能否可以如下计算:能否可以如下计算:23)(22mRmRJJLCAA ee()CCCmaFJMF 2e22e2ddd()dCCCrmFtJMFt11-6 11-6 刚体的平面运动微分方程刚体的平面运动微分方程平面运动平面运动随质心平移随质心平移绕质心转动绕质心转动投影式:投影式: eee()CxxCyyCCmaFmaFJMF etene()CtCnCC
17、maFmaFJMF 以上各组均称为刚体平面运动微分方程以上各组均称为刚体平面运动微分方程. .知:半径为知:半径为r r ,质量为,质量为m m 的均质圆轮沿程度直线滚动,如的均质圆轮沿程度直线滚动,如下图下图. .设轮的惯性半径为设轮的惯性半径为 ,作用于轮的力偶矩为,作用于轮的力偶矩为M .M .求求轮心的加速度轮心的加速度. .假设圆轮对地面的滑动摩擦因数为假设圆轮对地面的滑动摩擦因数为f f ,问,问力偶力偶M M 必需符合什么条件不致使圆轮滑动必需符合什么条件不致使圆轮滑动? ?C例例11-811-8M解:解:N2CxCyCmaFmaFmgmMFr 2222N,CCCCF rMraM
18、rmrFmaFmg纯滚动的条件:纯滚动的条件:sNFf F即即22sCrMf mgrCa0Car知:均质圆轮半径为知:均质圆轮半径为r r 质量为质量为m m ,遭到细微扰动后,遭到细微扰动后,在半径为在半径为R R 的圆弧上往复滚动,如下图的圆弧上往复滚动,如下图. .设外表足够设外表足够粗糙,使圆轮在滚动时无滑动粗糙,使圆轮在滚动时无滑动. . 求求: :质心质心C C 的运动规律的运动规律. .例例11-911-9tCart21, sin2CCaSJmr很小解解: :tsinCmaFmgCJFr cos2mgFrRvmNCrRs0dd2322srRgts)sin(00tssrRg3220, 00vss初始条件初始条件grRvs23,000运动方程为运动方程为trRggrRvs32sin230例例11-1011-10知:如下图均质圆环半径为知:如下图均质圆环半径为r r,质量为,质量为m m,其上焊接,其上焊接刚杆刚杆OAOA,杆长为,杆长为r r,质量也为,质量也为m m。用手扶住圆环使其在。用手扶住圆环使其在OAOA程度位置静止。设圆环与地面间为纯滚动。程度位置静止
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购买按揭二手车的合同范本
- 2024重型汽车吊设备租赁服务协议
- 纸箱购销合同范本
- 晚会合同范本
- 2024年灰砂砖订货协议详细条款
- 2024年特定项目委托施工协议样本
- 流量购买合同范本
- 置换建房合同范本
- 电脑设备采购协议:2024年定制
- 齐齐哈尔大学《机械专业外语》2022-2023学年第一学期期末试卷
- 建筑工程--XZ公司16年内部资料:安装公司施工工艺标准合集参考范本
- 校园及周边高危人员排查情况表(共2页)
- 建筑风水学PPT
- 化学除磷加药量及污泥量计算书
- 有关消防复查的申请书
- 苏州市存量房买卖合同
- 文艺清新PPT模板 (148)
- 安徽省建设工程造价咨询服务项目及收费标准
- 建筑工程关键施工技术工艺及工程项目实施的重点难点和解决方案
- 汉简本《老子》释文
- 泌尿系统梗阻病人的护理.ppt
评论
0/150
提交评论