版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、新课引入新课引入 导数在实际生活中有着广泛的应导数在实际生活中有着广泛的应用用, ,利用导数求最值的方法利用导数求最值的方法, ,可以求出可以求出实际生活中的某些最值问题实际生活中的某些最值问题. .1. .几何方面的应用几何方面的应用. .2. .物理方面的应用物理方面的应用. .3. .经济学方面的应用经济学方面的应用. .(面积和体积等的最值)(面积和体积等的最值)(利润方面最值)(利润方面最值)(功和功率等最值)(功和功率等最值)例例1在边长为在边长为60 cm的正方形铁片的四角切去的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如相等的正方形,再把它的边沿虚线折起(如图),
2、做成一个无盖的方底箱子,箱底的边长图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?是多少时,箱底的容积最大?最大容积是多少?xx6060 xx解:设箱底边长为x cm, 箱子容积为Vx2 h则箱高602xh23602xxV =60 x3x/2令V 0,得x40,x0 (舍去)得V (40)16000答:当箱底边长为x40时,箱子容积最大,最大值为16000cm3060 x ()当x(0,40)时V (x)0;当x(40,60)时V (x)0;V (40)为极大值,且为最大值例例2圆柱形金属饮料罐的容积一定时,它的高与圆柱形金属饮料罐的容积一定时,它的高与底与半
3、径应怎样选取,才能使所用的材料最省?底与半径应怎样选取,才能使所用的材料最省?hR解解:设桶底面半径为设桶底面半径为R,2VhR则桶高为222( )2222,VS RRRRVRR桶的用料为22( )4,VS RRR22( )40,VS RRR令2VR 解得2232VVhRV此时,Rh2即因为因为S(R)只有一个极值只有一个极值,所以它是最小值所以它是最小值答:当罐高与底的直径相等时,所用材料最省答:当罐高与底的直径相等时,所用材料最省3422VV33变式:当圆柱形金属饮料罐的表面积为定值变式:当圆柱形金属饮料罐的表面积为定值 S 时时, ,它的高与底面半径应怎样选取,它的高与底面半径应怎样选取
4、, 才能使所用材料最省?才能使所用材料最省?提示:S2Rh2R2 h222SRRV(R) R2(S2R2)R SRR3222SRR1212V (R)0 S6R2 6R2 2Rh2R2 h2R例例3 在如图所示的电路中,已知电源的内阻为在如图所示的电路中,已知电源的内阻为r,电,电动势为动势为,外电阻,外电阻R为多大时,才能使电功率最大?最为多大时,才能使电功率最大?最大电功率是多少?大电功率是多少?R解:电功率PI2R,其中I为电流强度,则 PE/ /(Rr)2R由由P 0,解得:,解得:Rr列表分析列表分析,当当Rr时,时,P取得极大值,且是最大值最大值为取得极大值,且是最大值最大值为P 答
5、:当外电阻答:当外电阻R等于内电阻等于内电阻r时,电功率最大,最大时,电功率最大,最大电功率是电功率是 2222243()()() ()()()E RRrE R RrE rRPRrRrERr22()E RRr24Er24Er例例4 4 强度分别为强度分别为a,b的两个点光源的两个点光源A,B,它们间,它们间的距离为的距离为d,试问在连接这两个光源的线段,试问在连接这两个光源的线段AB上,上,何处照度最小?试就何处照度最小?试就a8,b1,d3时回答上述时回答上述问题(照度与光的强度成正比,与光源距离的平方问题(照度与光的强度成正比,与光源距离的平方成反比成反比ABPX3X228kakxx,即;
6、解:如图,设点P在线段AB上,且P距光源A为x, 则P距光源B为3x(0 x3).P点受A光源的照度为2233kbkxx,即,(其中,k为比例常数) 22803 .3kkI xxxxP点受B光源的照度为从而,P点的总照度为: 23333182612162033k xxxkkIxxxxx由解得x2,故当0 x2时,I(x)0;当2x3时, I(x)0因此,x2时,I取得极小值,且是最小值答:在连结两光源的线段答:在连结两光源的线段AB上,距光源上,距光源A为为2处的照度最小处的照度最小例例5 5 在经济学中,生产在经济学中,生产x单位产品的成本称为成单位产品的成本称为成本函数,记为本函数,记为C
7、(x);出售;出售x单位产品的收益称为收单位产品的收益称为收益函数,记为益函数,记为R(x); R(x)C(x)称为利润函数,称为利润函数,记为记为P(x).(1 1)设)设C(x)106x30.003x25x1000,生产多,生产多少单位产品时,边际成本少单位产品时,边际成本C (x)最低最低? ?(2 2)设)设C(x)50 x10000,产品的单价,产品的单价p1000.01x,怎样定价可使利润最大?怎样定价可使利润最大?解:(1)c(x)3106x20.006x5g(x), g(x) 6106x0.0060, 解得:x1000,而g(x)在x0上仅有一个极小值,故x1000时边际成本最
8、低(2)P(x) R(x) C(x) x(1000.01x)(50 x10000) 0.01x250 x 10000 , x2500,而P(x)最大,此时P1002575答:生产1000个单位产品时,边际成本最低;当生产的单价为75时,利润最大四、课堂练习四、课堂练习1将正数将正数a分成两部分,使其立方和为最小,这两部分应分成分成两部分,使其立方和为最小,这两部分应分成_和和_2在半径为在半径为R的圆内,作内接等腰三角形,当底边上高为的圆内,作内接等腰三角形,当底边上高为_时,它的面积最大时,它的面积最大3有一边长分别为有一边长分别为8与与5的长方形,在各角剪去相同的小正方形,的长方形,在各角
9、剪去相同的小正方形,把四边折起作成一个无盖小盒,要使纸盒的容积最大,问剪去把四边折起作成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形边长应为多少?的小正方形边长应为多少?4一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面希望在断面ABCD的面积为定值的面积为定值S时,使得湿周时,使得湿周lAB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长和下底边长b. 五、回顾反思五、回顾反思(1)解有关函数最大值、最小值的实际问题,需要分析问题)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义数的定义区间;所得结果要符合问题的实际意义(2)根据问题的实际意义来判断函数最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 食品厂8s管理课件
- 湖北科技学院《妇产科护理学》2022-2023学年第一学期期末试卷
- 教育设施意向性租赁合同
- 石油天然气合同管理指南
- 物业售场服务培训
- 软件公司美缝施工合同
- 模具生产线合同模板
- 公路改扩建工程融资合同
- 高楼建筑设备维修吊车租赁合同
- 旅游景区道路改造合同
- 混合机大数据分析与预测性维护
- 东营港加油、LNG加气站工程环评报告表
- 数字化影视制作流程策划书
- 《物联网单片机应用与开发》课程标准(含课程思政)
- 电源适配器方案
- 人民银行征信报告样板
- 全国民用建筑工程设计技术措施节能专篇-暖通空调动力
- 中国急诊重症肺炎临床实践专家共识课件
- 辽宁省2023年高中学业水平合格性考试语文试卷真题(答案详解)
- 投资管理的项目投资和项目管理
- 2024年度医院心血管内科护士长述职报告课件
评论
0/150
提交评论