




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、几何辅助线(图)作法探讨一、构造基本图形:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形。如平行线,垂直线,直角三角形斜边上中线,三角形、四边形的中位线等。等腰(边)三角形、直角三角形、全等三角形、相似三角形、特殊四边形和圆的特殊图形也都是基本图形,但我们后面把它们单独表述。典型例题:例1.如图,【 】A. B. C. D.例2.已知点E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,若ACBD,且ACBD,则四边形EFGH的形状是 .(填“梯形”“矩形”“菱形” )例3.如图,线段AC=n+1(其
2、中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到AME当AB=1时,AME的面积记为S1;当AB=2时,AME的面积记为S2;当AB=3时,AME的面积记为S3;当AB=n时,AME的面积记为Sn当n2时,SnSn1= 例4.如图,在四边形ABCD中,ADBC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在BC边上,且GDF=ADF。(1)求证:ADEBFE;(2)连接EG,判断EG与DF的位置关系,并说明理由。例5.如图,已知矩形纸片ABCD,AD=2,AB=4将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB,
3、CD交于点G,F,AE与FG交于点O(1)如图1,求证:A,G,E,F四点围成的四边形是菱形;(2)如图2,当AED的外接圆与BC相切于点N时,求证:点N是线段BC的中点;(3)如图2,在(2)的条件下,求折痕FG的长二、构造等腰(边)三角形:当问题中出现一点发出的二条相等线段时往往要补完整等腰(边)三角形;出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰(边)三角形。通过构造等腰(边)三角形,应用等腰(边)三角形的性质得到一些边角相等关系,达到求证(解)的目的。典型例题:例1. 如图,在等腰ABC中,ABAC,BAC50°BAC的平分线与AB的中垂线交于点O,点C沿EF折
4、叠后与点O重合,则CEF的度数是 例2.如图,已知ABC是等边三角形,点D、F分别在线段BC、AB上,EFB=60°,DC=EF(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD例3.如图,在梯形ABCD中,AD/BC,ABDC,过点D作DEBC,垂足为E,并延长DE至F,使EFDE联结BF、CD、AC(1)求证:四边形ABFC是平行四边形; (2)如果DE2BE·CE,求证四边形ABFC是矩形 三、构造直角三角形:通过构造直角三角形,应用直角三角形的性质得到一些边角关系(勾股定理,两锐角互余,锐角三角函数),达到求证(解)的目的。典型例题:例1.
5、已知:在ABC中,AC=a,AB与BC所在直线成45°角,AC与BC所在直线形成的夹角的余弦值为 (即cosC=),则AC边上的中线长是 例2. 如图,在矩形ABCD中,ADAB,将矩形ABCD折叠,使点C与点A重合,折痕为MN,连结CN若CDN的面积与CMN的面积比为14,则 的值为【 】A2 B4 C D例3.如图,在四边形ABCD中,对角线AC,BD交于点E,BAC=900,CED=450,DCE=900, DE=,BE=2求CD的长和四边形ABCD的面积四、构造全等三角形:通过构造全等三角形,应用全等三角形对应边、角相等的性质,达到求证(解)的目的。典型例题:例1. 如图,在
6、矩形ABCD中,点E,F分别在BC,CD上,将ABE沿AE折叠,使点B落在AC上的点B处,又将CEF沿EF折叠,使点C落在EB与AD的交点C处则BC:AB的值为 。例2. 如图,ABCD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是【 】A4B3C2D1例4. (2011广西南宁3分)如图,在ABC中,ACB90º,A15º,AB8,则AC·BC的值为【 】A14 B16 C4 D16例5. (2011山东济南3分)如图,在ABC中,ACB90º,ACBC,分别以AB、BC、CA为一边向ABC外作正方形ABDE、BCMN、CAFG,连
7、接EF、GM、ND,设AEF、BND、CGM的面积分别为S1、S2、S3,则下列结论正确的是【 】AS1S2S3 BS1S2S3CS1S3S2 DS2S3S1例6. (2011山东德州8分)如图 AB=AC,CDAB于D,BEAC于E,BE与CD相交于点O(1)求证AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由例3.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH(1)求证:APB=BPH;(2)当点P在边AD上移动时,PDH的周长是
8、否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由五、构造相似三角形:通过构造相似三角形,应用相似三角形对应角相等、对应边成比例的性质,达到求证(解)的目的。典型例题:例1.如图,矩形ABCD中,AB=2,AD=4,AC的垂直平分线EF交AD于点E、交BC于点F,则EF= 例3.如图,ABC中,AB=AC,D是AB上的一点,且AD=AB,DFBC,E为BD的中点若EFAC,BC=6,则四边形DBCF的面积为 例4. (2011山东淄博4分)如图,正方体的棱长为3,点M,N分别在CD,
9、HE上,CM=DM,HN=2NE,HC与NM的延长线交于点P,则tanNPH的值为 例2.已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B和折痕OP设BP=t()如图,当BOP=300时,求点P的坐标;()如图,经过点P再次折叠纸片,使点C落在直线PB上,得点C和折痕PQ,若AQ=m,试用含有t的式子表示m;()在()的条件下,当点C恰好落在边OA上时,求点P的坐标(直接写出结果即可)六、构造特殊四边形:通过构造平行四边形、矩形、菱形、正方形、梯形等特殊四边形,应用它们边、角
10、、对角线、中位线的性质,达到求证(解)的目的。典型例题:例1. 如图,矩形ABCD中,E是AD的中点,将ABE沿BE折叠后得到GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为【 】A B C D例2. 如图,点D是ABC的边AB的延长线上一点,点F是边BC上的一个动点(不与点B重合).以BD、BF为邻边作平行四边形BDEF,又APBE(点P、E在直线AB的同侧),如果,那么PBC的面积与ABC面积之比为【 】A. B. C. D.例3.如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到PAB、PBC、PCD、PDA,设它们的面积分别是S1、S2、S3、S4,给
11、出如下结论:S1+S2=S3+S4 S2+S4= S1+ S3 若S3=2 S1,则S4=2 S2 若S1= S2,则P点在矩形的对角线上其中正确的结论的序号是 (把所有正确结论的序号都填在横线上).例4.如图,在ABCD中,延长CD到E,使DECD,连接BE交AD于点F,交AC于点G。(1)求证:AFDF;(2)若BC2AB,DE1,ABC60°,求FG的长。例5.如图,在四边形ABCD中,ADBC,对角线AC的中点为O,过点O作AC的垂直平分线分别与AD、BC相交于点E、F,连接AF。求证:AE=AF。例6.(2012海南省11分)如图(1),在矩形ABCD中,把B、D分别翻折,
12、使点B、D分别落在对角线BC上的点E、F处,折痕分别为CM、AN.(1)求证:ANDCBM.(2)请连接MF、NE,证明四边形MFNE是平行四边形,四边形MFNE是菱形吗?请说明理由?(3)P、Q是矩形的边CD、AB上的两点,连结PQ、CQ、MN,如图(2)所示,若PQ=CQ,PQMN。且AB=4,BC=3,求PC的长度.七、构造圆的特殊图形:通过构造圆的特殊图形,应用圆周角定理、垂径定理、切线与过切点的半(直)径的关系、两圆相切公切线的性质、两圆相交公共弦的性质等,达到求证(解)的目的。典型例题:例3.如图,过A、C 、D三点的圆的圆心为E,过B、F、E三点的圆的圆心为D,如果A=63
13、76;,那么= 来源例4.如下图OA=OB=OC且ACB=30°,则AOB的大小是【 】 A.40°B.50°C.60°D.70°例5.如图,已知正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF的长为 例6.如图,矩形OABC内接于扇形MON,当CN=CO时,NMB的度数是 .八、基本辅助线:基本辅助线包括连接两点的线段、平行线、垂直线、角平分线等,如连接直角三角形直角顶点与斜边的中点构成斜边上的中线;过三角形一边的中点作另一边的平行线构成三角形的中位线;过三角形一顶点作对
14、边的垂直线构成直角三角形;连接圆上一点和直径的两端点构成直角三角形;等等。典型例题:例2.如图,已知AB=DC,DB=AC(1)求证:ABD=DCA,注:证明过程要求给出每一步结论成立的依据(2)在(1)的证明过程中,需要作辅助线,它的意图是什么?例3.如图,在RtABC中,ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若F=30°,DE=1,则EF的长是【 】A3 B2 C D1例5.如图,在四边形ABCD中,DCAB,CBAB,AB=AD,CD=AB,点E、F分别为ABAD的中点,则AEF与多边形BCDFE的面积之比为【 】A B C D例6.若一个正六边形
15、的周长为24,则该正六边形的面积为 例8.如图,CD是O的直径,AB是弦(不是直径),ABCD于点E,则下列结论正确的是【 】A AEBE B B CD=AEC DADECBE例9.在O中,直径ABCD于点E,连接CO并延长交AD于点F,且CFAD.则D的度数是【 】.例7.(2012福建厦门10分)已知ABCD,对角线AC与BD相交于点O,点P在边AD上,过点P分别作PEAC、PFBD,垂足分别为E、F,PEPF(1)如图,若PE,EO1,求EPF的度数;(2)若点P是AD的中点,点F是DO的中点,BF BC34,求BC的长九、截取和延长变换:在一个平面几何图形内,延长或截取某一条线段,使条
16、件和问题相对集中 ,达到化隐为现的目的,常常使线段所在的三角形与平面内某一三角形成为全等三角形。证明两条线段的和差,80%的情况都要用截长补短法。典型例题:例1.(2012江苏南京2分)如图,菱形纸片ABCD中,A=600,将纸片折叠,点A、D分别落在A、D处,且AD经过B,EF为折痕,当DFCD时,的值为【 】A. B. C. D. 例2.(2012黑龙江牡丹江3分)如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O则下列结论ABFCAE,AHC=1200,AH+CH=DH,AD 2=OD·DH中,正确的是
17、【 】A. B. C. D. 例3.(2012湖北天门、仙桃、潜江、江汉油田3分)如图,ABC为等边三角形,点E在BA的延长线上,点D在BC边上,且ED=EC若ABC的边长为4,AE=2,则BD的长为【 】A2 B3 C D例4.(2012山东枣庄8分)已知:如图,在四边形ABCD中,ABC90°,CDAD,AD2CD22AB2 (1)求证:ABBC;(2)当BEAD于E时,试证明:BEAECD例5.(2012重庆市10分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作MECD于点E,1=2(1)若CE=1,求BC的长;(2)求证:AM=DF+ME十
18、、平移变换:平移变换是几何变换中的基本变换之一,平移变换是使图形上的点沿同一方向平移同一距离得到新的图形。平移变换前后的图形具有如下性质:(1)对应线段平行且相等;(2)对应角的两边平行且方向一致。典型例题:例1. (2012海南省3分)如图,APB=300,圆心在边PB上的O半径为1cm,OP=3cm,若O沿BP方向移动,当O与PA相切时,圆心O移动的距离为 cm.例2.(2012江西南昌3分)如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线【 】Aa户最长 Bb户最长 Cc户最长 D三户一样长例3. (2011湖北黄冈、鄂州3分)如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为 例4.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 受拉构件的配筋形式钢筋混凝土结构课件
- 四危险源设备吊装课件
- 铁路工程安全技术石家庄铁路84课件
- 《GB 17681-1999易燃易爆罐区安全监控预警系统验收技术要求》(2025版)深度解析
- 中华文化课件背景
- 校园食堂承包合同书
- 《房地产基础》课件 情境三 教你选对产品
- 山西工程职业学院《新闻纷争处置方略》2023-2024学年第二学期期末试卷
- 辽宁石化职业技术学院《国际汉语教学案例与分析》2023-2024学年第一学期期末试卷
- 宁夏回族自治区银川市第一中学2024-2025学年高三2月七校联考数学试题含解析
- 基层综合治理法律培训课件
- 中医妇科医生行业现状分析
- 必杀04 第七单元 我们邻近的地区和国家(综合题20题)(解析版)
- 高大支架坍塌事故原因分析及预防措施
- 企业安全检查表(全套)
- 票据业务承诺函
- 《来一斤母爱》课件
- ISO13485质量管理手册
- 办理用电户更名过户声明书范本
- 浅层气浮设计
- 辩论赛PPT模板模板
评论
0/150
提交评论