




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Gaussian Smoothing Filter高斯平滑滤波器一、图像滤波的基本概念图像常常被强度随机信号(也称为噪声)所污染.一些常见的噪声有椒盐(Salt & Pepper)噪声、脉冲噪声、 高斯噪声 等.椒盐噪声含有随机出现的黑白强度值.而脉冲噪声则只含有随机的白强度值(正脉冲噪声)或黑强度值(负脉冲噪声).与前两者不同,高斯噪声含有强度服从高斯或正态分布的噪声.研究滤波就是为了消除噪声干扰。图像滤波总体上讲包括空域滤波和频域滤波。频率滤波需要先进行傅立叶变换至频域处理然后再反变换回空间域还原图像,空域滤波是直接对图像的数据做空间变换达到滤波的目的。它是一种邻域运算,即输出图像
2、中任何像素的值都是通过采用一定的算法,根据输入图像 中对用像素周围一定邻域内像素的值得来的。如果输出像素是输入像素邻域像素的线性组 合则称为线性滤波(例如最常见的均值滤波和高斯滤波),否则为非线性滤波(中值滤波、边缘保持滤波等)。线性平滑滤波器去除高斯噪声的效果很好,且在大多数情况下, 对其它类型的噪声也有很好的效果。线性滤波器使用连续窗函数内像素加权和来实现滤波。特别典型的是,同一模式的权重因子可以作用在每一个窗口内,也就意味着 线性滤波器是空间不变的,这样就可以使用卷积模板来实现滤波。如果图像的不同部分使用不同的滤波权重因子,且仍然可以用滤波器完成加权运算,那么线性滤波器就是空间可变的。任
3、何不是像素加权运算的滤波器都属于非线性滤波器.非线性滤波器也可以是空间不变的,也就是说,在图像的任何位置上可以进行相同的运算而不考虑图像位置或空间的变化。二、图像滤波的计算过程分析滤波通常是用卷积或者相关来描述,而线性滤波一般是通过卷积来描述的。他们非常类似, 但是还是会有不同。下面我们来根据相关和卷积计算过程来体会一下他们的具体区别: 卷积的计算步骤:(1) 卷积核绕自己的核心元素顺时针旋转180度(2) 移动卷积核的中心元素,使它位于输入图像待处理像素的正上方(3) 在旋转后的卷积核中,将输入图像的像素值作为权重相乘(4) 第三步各结果的和做为该输入像素对应的输出像素 相关的计算步骤:(1
4、) 移动相关核的中心元素,使它位于输入图像待处理像素的正上方(2) 将输入图像的像素值作为权重,乘以相关核(3) 将上面各步得到的结果相加做为输出可以看出他们的主要区别在于计算卷积的时候,卷积核要先做旋转。而计算相关过程中不需要旋转相关核。例如:magic(3) =8 1 6;3 5 7;4 9 2,旋转 180 度后就成了 2 9 4;7 5 3;6 1 8三、高斯(核)函数所谓径向基函数 (Radial Basis Function简称 RBF),就是某种沿径向对称的标量函数。通常定义为空间中任一点 x到某一中心xc之间欧氏距离的单调函数 ,可记作k(|x-xc|),其作 用往往是局部的,
5、即当x远离xc时函数取值很小。最常用的径向基函数是高斯核函数,形式为k(|x-xc|)=exp- |x-xc|A2/(2* b )A2) 其中xc为核函数中心,e为函数的宽度参数 ,控 制了函数的径向作用范围。高斯函数具有五个重要的性质,这些性质使得它在早期图像处理中特别有用.这些性质表明,高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器,且在实际图像处理中得到了工程人员的有效使用.高斯函数具有五个十分重要的性质,它们是:(1) 二维高斯函数具有 旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来 说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比
6、另一方 向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方 向.(2) 高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的, 因为边缘是一种图像局部特征, 如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真.(3) 高斯函数的付立叶变换频谱是 单瓣的.正如下面所示,这一性质是高斯函数付立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频信号所污染(噪声和细纹理).而所希望的图像特征(如边缘),既含有低频分量,又含有高频分量.高 斯
7、函数付立叶 变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号.(4) 高斯滤波器宽度(决定着平滑程度)是由参数b表征的,而且b和平滑程度的关系是非常简单的.b越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数b ,可在图像特征过分模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望 突变量(欠平滑)之间取得折衷.(5) 由于高斯函数的可分离性,大高斯滤波器可以得以有效地实现.二维高斯函数卷积可以分两步来进行,首先将图像与一维高斯函数进行卷积,然后将卷积结果与方向垂直的相同一维高斯函数卷积.因此,二维高斯滤波的计算量随滤波模板宽度成线性增长
8、而不是成平方 增长.四、高斯平滑滤波器的设计高斯函数的最佳逼近由二项式展开的系数决定,换句话说,用杨辉三角形(也称Pascal三角形)的第 n行作为高斯滤波器的一个具有n个点的一维逼近,例如,五点逼近为:1 4 6 4 1它们对应于Pascal三角形的第5行.这一模板被用来在水平方向上平滑图像.在高斯函数 可分离性性质中曾指出, 二维高斯滤波器能用两个一维高斯滤波器逐次卷积来实现,一个沿水平方向,一个沿垂直方向.实际中,这种运算可以通过使用单个一维高斯模板,对两次卷积之间的图像和最后卷积的结果图像进行转置来完成.这一技术在模板尺寸 N约为10时的滤波效果极好.对较大的滤波器,二项式展开系数对大
9、 多数计算机来说都太多.但是,任意大的高斯滤波器都能通过重复使用小高斯滤波器来实现.高斯滤波器的二项式逼近的 b可用高斯函数拟合二项式系数的最小方差来计算.设计高斯滤波器的 另一途径是直接从离散高斯分布中计算模板权值。为了计算方便,一般希望滤波器权值是整数。在模板的一个角点处取一个值,并选择一个K使该角点处值为1。通过这个系数可以使滤波器整数化,由于整数化后的模板权值之和不等于1,为了保证图像的均匀灰度区域不受影响,必须对滤波模板进行权值规范化。 高斯滤波器的采样值或者高斯滤波器的二项式展开系数可以形成离散高斯滤波器.当用离散高斯滤波器进行卷积时,其结果是一个更大的高斯离散滤波器.若一幅图像用
10、 N*N离散高斯滤波器进行平滑,接着再用M*M 离散高斯滤波器平滑的话,那么平滑结果就和用(N+M-1 ) * (N+M-1 )离散高斯滤波器平滑的结果一样.换言之,在杨辉三角形中用第N行和第M行卷积形成了第 N+M-1行.五、具体实现二维高斯函数:G(x, y) = Ae22x y2。2%)=融I 2=044& 时,GCO.Ol 一般用宽度小于2/的滤波器,<?3 =16当厅=1/2时,i由连续Gaussian分布求离散模板,需采样、量化,并使模板归一化。举例结果如下:图1原图像lenna图1有噪声的lenna图中的噪声是高斯白噪声。图3高斯滤波,b 2=1选取不同参数b的高斯
11、滤波模板,平滑的效果是有差别的, 实际上b越大其作用域就越 宽,即平滑窗口越大,因而平滑的力度就越大,其结果使得图象变得越模糊。当b很大时,由于量化的影响,高斯滤波实际上就变成邻域平均了。图4高斯滤波,b =3可以看到高斯滤波虽然能够在一定程度上去掉噪声,但也使得图象变得模糊不清,效 果并不能令人满意。,、,一 2. 、 一 该图使用b =3即模板尺度为13x13的高斯滤波器。图象变得更模糊些。MATLAB 程序:% The main.m file % clc;% Parameters of the Gaussian filter:n1=5;sigma1=3;n2=5;sigma2=3;the
12、ta1=0;w,map=imread('lenna.gif);x=ind2gray(w,map);filter1=d2gauss(n1,sigma1,n2,sigma2,theta1);y=imnoise(x,'gauss',0.01);f1=conv2(x,filter1,'same'); rf1=conv2(y,filter1,'same'); figure(1);subplot(2,2,1);imagesc(x);title('lenna');subplot(2,2,2);imagesc(y);title('
13、noisy lenna');subplot(2,2,3);imagesc(f1);title('smooth');subplot(2,2,4);imagesc(rf1);title('noise cancel'); colormap(gray);% End of the main.m file % Function "d2gauss.m”:% This function returns a 2D Gaussian filter with size n1*n2; theta is % the angle that the filter rotated counter clockwise; and sigmal and sigma2 % are the standard deviation of the Gaussian functions.function h = d2gauss(n1,std1,n2,std2,theta)r=cos(theta) -sin(theta);sin(theta) cos(theta);for i = 1 : n2for j = 1 : n1u = r * j-(n1+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专项09:选用句式、仿写句子、句式变换(解析版)
- 电工基础期末考试试卷1
- 2017-2018学年高中化学必修2课时训练第一章第二节元素周期律第1课时原子核外电子排布元素周期律
- 高考物理课标版一轮复习考点规范练13万有引力定律及其应用
- 2025年玻尿酸注射项目建议书
- 2025年污水自动采样器合作协议书
- 基于SystemC的多核模型总线及通信模块设计
- SIPSYS服务器应用开发接口CSGATE的设计与实现
- 企业贷款合同范例
- 2025届高考数学二轮复习疯狂专练26模拟训练六理
- 跨国合作在医药研发中的应用与挑战
- 2025年皖北卫生职业学院单招职业技能测试题库审定版
- 膀胱灌注课件
- 2025年足疗店劳务用工合同模板
- 北京版五年级下册数学计算题专项练习1000道带答案
- 2025年黑龙江交通职业技术学院单招职业技能测试题库必考题
- 2024年02月山东2024齐鲁银行德州分行社会招考笔试历年参考题库附带答案详解
- 《新中国史》课程教学大纲
- 南京市江宁区2023-2024六年级数学下册第一二单元练习及答案
- 2025-2030年中国化工园区行业发展现状及投资前景分析报告
- 2024年无锡科技职业学院高职单招语文历年参考题库含答案解析
评论
0/150
提交评论