频率选择表面学习笔记_第1页
频率选择表面学习笔记_第2页
频率选择表面学习笔记_第3页
频率选择表面学习笔记_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、FSS-相关知识整理一、基本概念1、频率选择表面(Frequency Selective Surface ,FSS)是一种二维周期阵列结构,就其本质而言是一个空间滤波器,与电磁波相互作用表现出明显的带通 或带阻的滤波特性。FSS具有特定的频率选择作用而被广泛地应用丁微波、红外至可见光波段。2、分类频率选择表面有两种:贴片类型也叫介质类型,开槽类型也叫波导类型。贴片类型是在介质表面周期性的标贴同样的金届单元,一般而言是作为带阻 型滤波器的;低频透射,高频反射;开槽类型是在金届板上周期性的开一些金届单元的槽孔,从频率特性相应上 看是带通型频率选择表面;低频反射,高频透射。3、频率选择表面的应用雷达

2、罩:通过安装频率选择表面减少$达散射截面积。卡塞哥伦天线副反射面:实现波束的复用与分离。准光滤波器:实现波束的复用与分离。吸波材料:基丁高损耗的介质,可以实现大带宽的吸波材料。极化扭转:折线形的频率选择表面是一个线极化变成圆极化的极化扭转器。天线主面:降低带外的噪声。图1频率选择表面的滤波机理频率选择表面和一般意义上的通过电容、电感组成的滤波器在目的上是致。而滤波机理和有很大的区别(图 1)。最大的区别是,一般的滤波器作用的 对象是电路中的电流,而且一般滤波器我们主要关心通带的波形是不是有畸变, 而对丁阻带就就不必关心了。而频率选择表面是对丁场的滤波器, 不论是透射波 还是反射波都是十分重要,

3、不仅仅要关注其幅度、相位的变化,还要关心交义极 化和热损耗等。图2贴片类型频率选择表面的等效电路滤波机理:假设电磁波入射从左向右入射到贴片型频率选择表面上。在平行丁贴片方向的电场对电子产生作用力使其振荡,从而在金届表面上形成感应电流。这个时候, 入射电磁波的一部分能量转化为维持电子振荡状态所需的动能,而另一部分的能力就透过金届丝,继续传播。换言之,根据能量守包定律,维持电子运动的能量 就被电子吸收了。在某一频率下,所有的入射电磁波能量都被转移到电子的振荡 上,那么电子产生的附加散射场可以抵消金届导线右侧的电磁波的出射场,使得透射系数为零。此时,电子所产生的附加场同时也向金届导线左侧传播,形成发

4、射场。这种现象就是谐振现象,该频率点成为谐振点。直观的看,这个时候贴片 型频率选择表面就成反射特性。再考虑另一种情况,入射波的频率不是谐振频率的时候,只有很少的能量用 于维持电子做加速运动,大部分的能量都传播到了贴片的右侧。在这种情况下, 贴片对丁入射电磁波而言,是“透明”的,电磁波的能量可以全部传播。 这个时 候,贴片型频率选择表面就成透射特性。一般而言,贴片类型是作为带阻型滤波器的。等效电路:LC申联B、贴片类型:在金届板上周期性的开一些金届单元的槽孔。滤波机理:当低频电磁波照射开槽型频率选择表面时, 将激发大范围的电子移动,使得 电子吸收大部分能量,且沿缝隙的感应电流很小,导致透射系数比

5、较小。随着入 射波频率的不断升高,这种电子移动的范围将逐渐较小,沿缝隙流动的电流在不 断增加,从而透射系数会得到改善。当入射电磁波的频率达到一定值时, 槽两侧 的电子刚好在入射波电场欠量的驱动下来回移动,在缝隙周围形成较大的感应电 流。由丁电子吸收大量入射波的能量, 同时也在向外辐射能量。运动的电子透过 偶极子槽的缝隙向透射方向辐射电场, 此时的偶极子槽阵列反射系数低, 透射系 数高。当入射波频率继续升高时,将导致电子的运动范围减小,在缝隙周围的电 流将分成若干段,电子透过槽缝隙辐射出去的电磁波减小, 因此,透射系数降低。 而对丁在远离缝隙的金届板上所产生的感应电流则向反射方向辐射电磁场,并且

6、由丁高频电磁波的电场变化周期的限制了电子的运动,辐射能量有限。因此,当高频电磁波入射时,透射系数减小,反射系数增大。图5-1贴片类型频率选择表面的等效电路图3贴片类型频率选择表面的等效电路从频率特性相应上看,开槽型频率选择表面是带通型频率选择表面。等效电路:LC并联C、贴片类型和开槽类型频率选择表面的关系:在不考虑介质的情况下,他们是互补的,可以看出开槽类型的频率选择表面 与贴片型频率选择表面相比,开槽型频率选择表面具有相反的频率响应特性。在 低丁谐振频率时,开槽类型的呈现感性电路特性;在高丁谐振频率是呈现容性电 路特性。从等效电路方法的角度来看,开槽型频率选择表面可以表述为电容电感 并联的等

7、效电路。在入射电磁波频率为谐振频率时,开槽型频率选择表面对谐振 频率的电磁波是“透明”的。而贴片类型的频率选择表面恰恰相反。二、存在的问题,设计的思路描述FSS频率响应特性的主要指标有中心频率、中心频率处的透过率、传 输带宽等。这些特性主要取决于FSS谐振单元的形式,单元的排布方式以及周围 介质的电性能。影响这些特性的因素很多,其中入射波的极化方式与入射角度是 两个重要的影响因素。1、在FSS的实际工程应用中,很多情况下入射波的极化方式是未知的,并且 入射角度范围大,此时要采用一种对不同入射角度和极化方式性能都稳定的 FSS 结构,即兼具极化和角度稳定性的FSS2、传统正方形栅格排布的十字单元

8、 FSS具有结构的对称性,在正入射时具 有极化稳定性,但是当入射电磁波的入射角度增大时,谐振频率随极化方式的改 变有很大的漂移,这极大地降低了 FSS的性能;另一方面十字单元和一般普通单 元一样随入射角度的变化,中心频率不具备角度稳定性,漂移量很大。这是 FSS 实现工程应用急需解决的问题。同时对于FSS极化稳定性的问题,正入射时可以选取对称单元实现极化稳 定性,但是工程应用中往往涉及到大的入射角度 ,此时仅仅依靠单元的对称性已 经不能实现结构的极化稳定性。3、侯新宇等通过优选图形单元 2Y孔单元的方法来实现FSS对入射角度的 稳定性,但Y形单元极化稳定性不好。4、 Munk等则是采用加载电介

9、质的方式改善大角度入射时FSS的传输特性, 但加载电介质乂往往会增加传输损耗。三、分析的方法沿一维或二维方向周期排列的金届贴片阵列或金届平面上的孔径阵列可实现低通、高通、带通和带阻等不同的滤波器特性,常被称为频率选择表面(FSS)。 习惯上,低通和高通的FSS 乂分别被称为感性FSS和容性FSS FSS的应用几 乎涉及所有的电磁波谱,如卫星天线的频率复用、天线罩、电路模拟吸收体以及 各种空间滤波器和准光频率器件等。由于结构复杂、参数众多,FSS的理论分析和设计非常困难。近年来已发展 的一些数值方法,如时域有限差分(FDTD )、有限元(FEM )以及积分方程(IE) 方法等由于计算内存占用量大、计算量大,从而导致计算效率很低。FSS在入射波作用下所表现出来的物理现象,可以通过传输线理论近似,因 此根据等效电路的原理,加以不同的极化和角度入

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论