九年级数学上册2121配方法时配方法新版新人教版_第1页
九年级数学上册2121配方法时配方法新版新人教版_第2页
九年级数学上册2121配方法时配方法新版新人教版_第3页
九年级数学上册2121配方法时配方法新版新人教版_第4页
九年级数学上册2121配方法时配方法新版新人教版_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1会计学九年级数学上册九年级数学上册2121配方法时配方法新配方法时配方法新版新人教版版新人教版理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题通过复习可直接化成x2p(p0)或(mxn)2p(p0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤了解配方法的概念,掌握运用配方法解一元二次方程的步骤通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目牛牛文库文档分享重点讲清直接降次有困难,如x26x160的一元二次方程的解题步骤讲清配方法的解题步骤难点将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧对于

2、用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解牛牛文库文档分享牛牛文库文档分享列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面前三个方程的解法呢?问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?牛牛文库文档分享(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征(2)不能既然不能直接降次解方程,那么,我们就

3、应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x26x160移项x26x16两边加(6/2)2使左边配成x22bxb2的形式x26x32169左边写成平方形式(x3)225降次x35即x35或x35解一次方程x12,x28可以验证:x12,x28都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.牛牛文库文档分享像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解例1用配方法解下列关于x的方程:(1)x28x10(2)x22x0分析:(1)显然方程的左边不是一个完全

4、平方式,因此,要按前面的方法化为完全平方式;(2)同上解:略牛牛文库文档分享三、巩固练习教材第9页练习1,2.(1)(2)四、课堂小结本节课应掌握:左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程五、作业布置教材第17页复习巩固2,3.(1)(2) 牛牛文库文档分享一、复习引入(学生活动)解下列方程:(1)x24x70(2)2x28x10老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题解:略(2)与(1)有何关联?牛牛文库文

5、档分享二、探索新知讨论:配方法解一元二次方程的一般步骤:(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(xp)2q的形式,如果q0,方程的根是xp;如果q0,方程无实根牛牛文库文档分享例1解下列方程:(1)2x213x(2)3x26x40(3)(1x)22(1x)40分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式解:略牛牛文库文档分享三、巩固练习教材第9页练习2.(3)(4)(5)(6)四、课堂小结本节课应掌握:1配方法的概念及用配方法解一元二次方程的步骤2配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性在今后学习二次函数,到高中学习二次曲线时,还将经常用到牛牛文库文档分享五、作业布置教材第17页复习巩固3.(3)(4)补充:(1)已知x2y2z22x4y6z140,求xyz的值(2)求证:无论x,y取任何实数,多项式x2y22x4y16的值总是正数. 牛牛文库文档分享理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题通过复习可直接化成x2p(p0)或(mxn)2p(p0)的一元二次方程的解法,引入不能直接化成上面两种

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论