版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1第五章 第五章:旋涡理论第五章:旋涡理论( (vortex theory) )本章仅讨论旋涡运动,不涉及力,属于运动学容。本章仅讨论旋涡运动,不涉及力,属于运动学容。 旋涡场的特性不同于一般流场,需要专门进行研究旋涡场的特性不同于一般流场,需要专门进行研究存在旋涡运动的流场存在旋涡运动的流场旋涡场旋涡场: :0即流场中即流场中课堂提问:为什么处于龙卷风中心会是风平浪静?课堂提问:为什么处于龙卷风中心会是风平浪静? 为什么游泳时应避开旋涡区?为什么游泳时应避开旋涡区? 21.1.漩涡场的基本概念(涡线,涡管,漩涡强漩涡场的基本概念(涡线,涡管,漩涡强 度速度环量)度速度环量)2.2.斯托克斯定
2、理斯托克斯定理3.3.汤姆逊定理汤姆逊定理4.4.海姆霍兹定理海姆霍兹定理5.5.毕奥沙伐尔定理毕奥沙伐尔定理6.6.兰金组合涡兰金组合涡 本章讨论内容:本章讨论内容:3 一般,整个流场中某些区域为旋涡区,其余一般,整个流场中某些区域为旋涡区,其余的地方则为无旋区域。的地方则为无旋区域。 自然界中如龙卷风自然界中如龙卷风, ,桥墩后面规则的双排涡桥墩后面规则的双排涡列等等是经常能观察到的旋涡运动的例子。但列等等是经常能观察到的旋涡运动的例子。但在大多数情况下流动中的旋涡肉眼难于察觉。在大多数情况下流动中的旋涡肉眼难于察觉。有旋运动:有旋运动:x x,y y,z z在流场中不全为零的流动在流场中
3、不全为零的流动5-1旋涡运动的基本概念旋涡运动的基本概念4龙卷风龙卷风1 15龙卷风龙卷风2 26海上漩涡海上漩涡7海上漩涡海上漩涡8飞机漩涡飞机漩涡9气旋气旋10气旋气旋11气旋气旋12园盘绕流尾流场中的旋涡园盘绕流尾流场中的旋涡园盘形阻园盘形阻13园球绕流尾流场中的旋涡园球绕流尾流场中的旋涡圆球形阻圆球形阻14园柱绕流尾流场中的旋涡园柱绕流尾流场中的旋涡圆圆柱柱绕绕流流(交交替替涡)涡)15有攻角机翼绕流尾流场中的旋涡有攻角机翼绕流尾流场中的旋涡机机翼翼失失速速(有有攻攻角角)16弯曲槽道内的二次流弯曲槽道内的二次流弯弯管管二二次次流流17 流体流过固体壁面时,除壁面附近粘性影响严流体流过
4、固体壁面时,除壁面附近粘性影响严重的一薄层外,其余区域的流动可视为理想流体重的一薄层外,其余区域的流动可视为理想流体的无旋运动。的无旋运动。 旋涡运动理论广泛地应用于工程实际旋涡运动理论广泛地应用于工程实际: 机翼、机翼、螺旋桨理论等。旋涡与船体的阻力、振动、噪螺旋桨理论等。旋涡与船体的阻力、振动、噪声等问题密切相关。声等问题密切相关。与压力差、质量力和粘性力等与压力差、质量力和粘性力等因素有关。因素有关。旋涡的产生:旋涡的产生:18旋涡场的几个基本概念:旋涡场的几个基本概念: 涡线上所有流体质点在涡线上所有流体质点在同瞬时的旋转角速度矢量同瞬时的旋转角速度矢量与此线相切。与此线相切。涡线涡线
5、(vortex line)(vortex line):一、涡线一、涡线, ,涡管涡管, ,旋涡强度旋涡强度涡线微分方程:涡线微分方程:dsdxidyjdzk取涡线上一段微弧长取涡线上一段微弧长xyzijk该处的旋转角速度该处的旋转角速度123ds19 由涡线的定义(涡矢量与涡线相切:由涡线的定义(涡矢量与涡线相切:叉积为零叉积为零),得涡线微分方程式:),得涡线微分方程式:( , , , )( , , , )( , , , )xyzdxdydzx y z tx y z tx y z t(5-1)(5-1) 若已知若已知 ,积分上式可得涡线。积分上式可得涡线。与流线的积分一样,将与流线的积分一样
6、,将看成参数。看成参数。取定取定值就得到该瞬时的涡线。值就得到该瞬时的涡线。,xyz 20涡管涡管涡管涡管( vortex tube vortex tube ):): 在旋涡场中任取一微小封闭曲线在旋涡场中任取一微小封闭曲线c c(不是(不是涡线),过涡线),过c c上每一点作涡线,这些涡线形成上每一点作涡线,这些涡线形成的管状曲面称涡管。的管状曲面称涡管。 涡管中充满着作旋转运动的涡管中充满着作旋转运动的流体,称为流体,称为涡束涡束。截面积为无。截面积为无限小的涡束称为限小的涡束称为涡索(涡丝)涡索(涡丝)。涡丝涡丝(vortex filamentvortex filament):):21龙
7、卷风龙卷风- -涡线涡线涡线涡线22则则 d dn nd=2d=2n nd d (5-2)为为dd上的上的旋涡强度旋涡强度- -涡通量涡通量若若是涡管的截面,则称为是涡管的截面,则称为涡管强度涡管强度, ,或涡通量或涡通量。问题:式问题:式(5-35-3)与前面学过的什么公式类似?)与前面学过的什么公式类似?任取微分面积任取微分面积dd, 法线分量为法线分量为沿沿面积分得旋涡强度:面积分得旋涡强度:表征流场中旋涡强弱和分布面积大小的物理量表征流场中旋涡强弱和分布面积大小的物理量nd dnj(5-3)23二、速度环量二、速度环量二、速度环量(二、速度环量(velocity circulation
8、velocity circulation)某瞬时在流场中任取曲线某瞬时在流场中任取曲线abab :速度矢在积分路径方向的分量沿该:速度矢在积分路径方向的分量沿该 路径的线积分。路径的线积分。速度环量速度环量定义定义sababv ds(5 54 4)sv:v在在 向的投影向的投影d svsvds微元弧微元弧dsa bbaabsdv24 速度环量是速度环量是标量标量,速度方向与积分,速度方向与积分abab曲线方曲线方向相同时(成锐角)为正向相同时(成锐角)为正, ,反之为负。反之为负。 线积分方向相反的速度环量相差一负号,即线积分方向相反的速度环量相差一负号,即ababbaba (5 55)5)速
9、度环量的其他表示形式:速度环量的其他表示形式:cos( ,)xyzababababv dsvv ds dsv dx v dy v dz25沿封闭周线沿封闭周线c c的速度环量的速度环量xyzcscccdxv dyv dzv dsvdsvc cdssvv26速度环量的计算速度环量的计算对于无旋流场对于无旋流场:对于有旋场对于有旋场:abxyzababbbaav dxv dyv dzdxdydzxyzd1) 1) 已知速度场,求沿一条开曲线的速度环量已知速度场,求沿一条开曲线的速度环量由公式由公式 计算计算abxyzababv dsvdx vdy vdz272. 2. 若已知速度场,求沿一条闭曲线
10、的速度环量若已知速度场,求沿一条闭曲线的速度环量对于无旋场对于无旋场:对于有旋场对于有旋场:0cxyzcccv dxv dyv dzdxdydzxyzd 2csncv dsd (5 51111)此式称为斯托克斯定理此式称为斯托克斯定理 28三、斯托克斯定理三、斯托克斯定理沿任意闭曲线的速度环量等于沿任意闭曲线的速度环量等于该曲线为边界的曲面内的旋涡该曲线为边界的曲面内的旋涡强度强度, ,即即 cj2csncv dsd (5 51111)或或斯托克斯定理:斯托克斯定理:环量与旋涡强度通过线积分环量与旋涡强度通过线积分与面积分联系起来了。与面积分联系起来了。cndjn d29证证 明明: :略略上
11、述斯托克斯定理只适用于上述斯托克斯定理只适用于“单连通区域单连通区域” c c 所包围的区域所包围的区域内全部是流内全部是流体,没有固体或空洞。体,没有固体或空洞。单连通区域:单连通区域:2csncv dsd (5 51111)jn d30复连通域复连通域c c的内部有空洞或者包的内部有空洞或者包含其他的物体含其他的物体。复连通域复连通域( (多连通域多连通域) ):abab线将线将切开,则沿周线切开,则沿周线abbabb,a a,eaea前进所围的区域前进所围的区域为单连通域。为单连通域。2abb a eand用斯托克斯定理有用斯托克斯定理有: :cc abdbaeaabcbal 区域在走向
12、的左侧区域在走向的左侧31c积分路线相反,抵消掉了。积分路线相反,抵消掉了。:沿外边界逆时针的环量:沿外边界逆时针的环量l l :沿内边界顺时针的环量:沿内边界顺时针的环量abba 2clnd 最后有最后有(5-13)(5-13)这就是双连通域的斯托克斯定理。这就是双连通域的斯托克斯定理。32 反之,若沿任意封闭周线的速度环量等于反之,若沿任意封闭周线的速度环量等于零,可得处处零,可得处处为零的结论。为零的结论。单连域内的无旋运动,流场中单连域内的无旋运动,流场中处处处处 为为零零,则沿任意封闭周线的速度环量为零,则沿任意封闭周线的速度环量为零 但沿某闭周线的速度环量为零,并不一定无但沿某闭周
13、线的速度环量为零,并不一定无旋(可能包围强度相同转向相反的旋涡)。旋(可能包围强度相同转向相反的旋涡)。2200cndd 推论一推论一33推论二推论二 对于包含一固体在内的双连通域,若流对于包含一固体在内的双连通域,若流动无旋,则沿包含固体在内的任意两动无旋,则沿包含固体在内的任意两个封闭周线的环量彼此相等。个封闭周线的环量彼此相等。则则 有:有:2clnd 即即即即 (与积分路径方向一致时与积分路径方向一致时)c34(3 3)正压流体(流体密度仅为压力的函数)正压流体(流体密度仅为压力的函数)假设:假设:(1)理想流体;)理想流体;(2)质量力有势;)质量力有势;沿流体质点组成的任一封闭流体
14、沿流体质点组成的任一封闭流体周线的速度环量周线的速度环量不随时间不随时间而变而变. . 汤姆逊定理汤姆逊定理: :(5 51414)即即0ddt5-2 汤姆逊定理汤姆逊定理351)1)在理想正压流体中在理想正压流体中, ,速度环量和旋涡不生不速度环量和旋涡不生不灭。因为不存在切向应力,不能传递旋转运灭。因为不存在切向应力,不能传递旋转运动。动。汤姆逊定理和斯托克斯定理说明:汤姆逊定理和斯托克斯定理说明: 2) 推论推论: 流场中原来有旋涡和速度环量的,永流场中原来有旋涡和速度环量的,永 远有旋涡并保持环量不变,原来没有旋涡和远有旋涡并保持环量不变,原来没有旋涡和 速度环量的速度环量的, 就永远
15、无旋涡和速度环量。就永远无旋涡和速度环量。 例如,从静止开始的波浪运动,由于流例如,从静止开始的波浪运动,由于流体静止时是无旋的,因此产生波浪以后,波体静止时是无旋的,因此产生波浪以后,波浪运动是无旋运动。浪运动是无旋运动。36注意注意: 贴近物体表面极薄一层要除外,由于粘性贴近物体表面极薄一层要除外,由于粘性的存在,这极薄一层为有旋运动。的存在,这极薄一层为有旋运动。 又如绕流物体的流动,远前方流动对物体又如绕流物体的流动,远前方流动对物体无扰动,该处流动无旋,接近物体时流动不再无扰动,该处流动无旋,接近物体时流动不再是均匀流,根据汤姆逊定理和斯托克斯定理,是均匀流,根据汤姆逊定理和斯托克斯
16、定理,流动仍保持为无旋运动。流动仍保持为无旋运动。37- 海姆霍兹定理海姆霍兹定理海姆霍兹第一定理海姆霍兹第一定理 涡管强度守恒定理涡管强度守恒定理(同一涡管各截面上的旋涡强度都相同)(同一涡管各截面上的旋涡强度都相同) 海姆霍兹第一定理海姆霍兹第一定理说明涡管各截面上的旋说明涡管各截面上的旋涡强度都相同。涡强度都相同。若涡管很小,若涡管很小, 垂直于垂直于 d ,则上式可写成,则上式可写成d const.38结论:结论: 涡管不能在流体中以尖端形式终止或涡管不能在流体中以尖端形式终止或开始,否则开始,否则时有时有。不可能的情况constdn因为因为涡管存在的形式涡管存在的形式:要么终止:要么
17、终止于流体边界或固体边界,要于流体边界或固体边界,要么自行封闭形成涡环。么自行封闭形成涡环。39海姆霍兹第二定理海姆霍兹第二定理海姆霍兹第二定理海姆霍兹第二定理涡管保持定理涡管保持定理 正压、理想流体在有势质量力作用下,正压、理想流体在有势质量力作用下,涡管永远由相同的流体质点所组成。涡管永远由相同的流体质点所组成。证明:证明:涡管表面上取封闭流体周线涡管表面上取封闭流体周线c由斯托克斯定理知沿周线由斯托克斯定理知沿周线c c的的 =0=0= =j j( (涡通量涡通量) )涡管涡管由汤姆逊定理该速度环量永远为零由汤姆逊定理该速度环量永远为零即即c c所围的区域永远没有涡线通过。所围的区域永远
18、没有涡线通过。 即涡管永远由相同的流体质点所组成。即涡管永远由相同的流体质点所组成。但涡管的形状和位置可能随时间变化。但涡管的形状和位置可能随时间变化。40海姆霍兹第三定理海姆霍兹第三定理海姆霍兹第三定理海姆霍兹第三定理涡管旋涡强度不随时间而变涡管旋涡强度不随时间而变 正压、理想流体在有势质量力作用下,涡管正压、理想流体在有势质量力作用下,涡管的旋涡强度不随时间而变。的旋涡强度不随时间而变。 由斯托克斯定理知由斯托克斯定理知绕涡管的速度环量等于涡绕涡管的速度环量等于涡管的旋涡强度管的旋涡强度,又汤姆逊定理知该,又汤姆逊定理知该速度环量不随速度环量不随时间变时间变,因而涡管的旋涡强度不随时间而变
19、。,因而涡管的旋涡强度不随时间而变。41海姆霍兹第一定理既适用于理想流体又适用于海姆霍兹第一定理既适用于理想流体又适用于粘性流体。粘性流体。海姆霍兹第二、三定理只适用于理想流体。海姆霍兹第二、三定理只适用于理想流体。因为流体的粘性将导致剪切、速度等因为流体的粘性将导致剪切、速度等参数脉动以及能量耗散,旋涡强度将随时参数脉动以及能量耗散,旋涡强度将随时间衰减。间衰减。425-4 毕奥一沙伐尔定理毕奥一沙伐尔定理问题问题 已知速度场可由式(已知速度场可由式(3-393-39)和()和(3-403-40)求偏导来确定旋涡场。求偏导来确定旋涡场。已知旋涡场,能否确定速度场?这是本节已知旋涡场,能否确定
20、速度场?这是本节要讨论的问题要讨论的问题问题的前提:问题的前提: 流场中只存在一部分旋涡,其流场中只存在一部分旋涡,其 它区域全为无旋区。它区域全为无旋区。例如流场中有若干弧立涡丝,必然影响周例如流场中有若干弧立涡丝,必然影响周围无旋区的速度分布。由涡丝引起的速度称为围无旋区的速度分布。由涡丝引起的速度称为旋涡诱导速度场旋涡诱导速度场。43 为了求为了求涡丝涡丝诱导速度场,现将电磁场中诱导速度场,现将电磁场中的毕奥的毕奥沙伐尔定理引用过来。沙伐尔定理引用过来。诱导速度场与电磁场的类比诱导速度场与电磁场的类比带电导线带电导线 涡丝涡丝(线线)电流强度电流强度 旋涡强度旋涡强度 诱导磁场强度诱导磁
21、场强度 诱导速度场诱导速度场磁磁 场场诱导速度场诱导速度场dhdv涡丝诱导的速度场的计算涡丝诱导的速度场的计算:44电磁场与诱导速度场的类比电磁场与诱导速度场的类比场点场点2sinrdsidh452sinrdsidh 电磁学中,电流强度为的导线,微元导电磁学中,电流强度为的导线,微元导线线dsds对场点所产生的磁场强度由对场点所产生的磁场强度由毕奥毕奥沙沙伐尔公式伐尔公式得得: :垂直于垂直于dsds和所在的平面,按右手法则确定。和所在的平面,按右手法则确定。: ds离场点离场点p的矢径的矢径式中:式中:: 是是ds与的夹角与的夹角dh的方向的方向:46毕奥毕奥沙伐尔公式的形式沙伐尔公式的形式
22、流体力学中流体力学中毕奥毕奥沙伐尔公式沙伐尔公式的形式的形式 旋涡强度为(环量旋涡强度为(环量)的)的dsds段涡丝段涡丝对于点所产生的诱导速度:对于点所产生的诱导速度:2sin4rdsdv 流场中单一有限长涡丝在流场中单一有限长涡丝在p p点的诱导速度沿点的诱导速度沿整个涡丝积分:整个涡丝积分:srdsv2sin4该式可算出任意单一涡丝所引起的诱导速度场该式可算出任意单一涡丝所引起的诱导速度场47 流场中多条涡丝可组成一涡面流场中多条涡丝可组成一涡面, , 每条每条涡丝的诱导速度求得后,沿涡面积分就可涡丝的诱导速度求得后,沿涡面积分就可求得整个涡面上的诱导速度。流体力学中求得整个涡面上的诱导
23、速度。流体力学中速度场可以看成是涡丝诱导出来的。速度场可以看成是涡丝诱导出来的。48典型实例:典型实例:dxrdvsin42典型实例:无限长直涡丝典型实例:无限长直涡丝dxdx段对点的诱段对点的诱导速度是:导速度是:直涡丝直涡丝段对点的段对点的诱导速度:诱导速度:方向垂直于纸面向外方向垂直于纸面向外2112sin(coscos)44vdrrrv 49= =1801.1.对于无限长直涡对于无限长直涡丝:丝:2.2.对于半无限长直涡丝:对于半无限长直涡丝:=90 =18012(coscos)1 ( 1)442vrrr 12(coscos)0 ( 1)444vrrr 50 在垂直于无限长直涡丝的任何
24、平面内在垂直于无限长直涡丝的任何平面内, 流动流动都是相同的,可视为二维流动都是相同的,可视为二维流动, 相当于一个平面相当于一个平面点涡。如环量为点涡。如环量为,则在平面极坐标内的诱导速,则在平面极坐标内的诱导速度为度为:02rvvrr为点涡至场点的距离为点涡至场点的距离例例3.4中已证明这种速度场是无旋的。中已证明这种速度场是无旋的。51例例5.15.1例例5.15.1如图强度相等的两点涡的初始位置,试如图强度相等的两点涡的初始位置,试就就(a)(a)和和(b)(b)两种情况决定此两点涡的运动。两种情况决定此两点涡的运动。解解: (a)(a):0axadxvdt点:点:1224ayadyv
25、dtaa 由由bs定律定律- -520bxbdxvdtb点:点:1224bybdyvdtaa 34,4bbxcytca 12,4aaxcytca 积分得积分得:,0,0,aabbxayxay 令时令时代入方程得代入方程得: 1= 2= 3=- - 4=- -53故,两点的运动方程为故,两点的运动方程为: :点:点:,4bbxayta 在在(a)(a)中,两点涡大小相等,中,两点涡大小相等,方向相反。方向相反。,4aaxayta 点:点: 两点涡相对位置保持不变,它们同时沿两点涡相对位置保持不变,它们同时沿方向等速向下移动。方向等速向下移动。540axadxvdt点:点:4ayadyvdta0b
26、xbdxvdt4bybdyvdtab点:点: 开始点向上,点向下运动,形成围绕开始点向上,点向下运动,形成围绕坐标原点,沿半径为的圆周的等速转动。坐标原点,沿半径为的圆周的等速转动。转动的角速度为转动的角速度为:24 a情况情况 ( b )55旋涡中心点和点的运动方程为:旋涡中心点和点的运动方程为:2,4bbrata 对于:对于:2,4aarata对于:对于:565-6 兰金组合涡兰金组合涡 设流场中有一半径为的无限长圆柱形设流场中有一半径为的无限长圆柱形流体象刚体一样绕其轴线转动,角速度为流体象刚体一样绕其轴线转动,角速度为。 例例3.33.3已证明,圆柱内的流体运动有旋,且已证明,圆柱内的
27、流体运动有旋,且旋涡角速度就是旋涡角速度就是。 这样的旋涡以及它的诱导速度场可作为平这样的旋涡以及它的诱导速度场可作为平面涡处理。由于旋涡诱导的速度场是无旋的,面涡处理。由于旋涡诱导的速度场是无旋的,在讨论整个流场的速度和压力分布时,亦须将在讨论整个流场的速度和压力分布时,亦须将旋涡内部和外部分开。旋涡内部和外部分开。57(1 1)旋涡内部:)旋涡内部:流体象刚体一样绕中心转动流体象刚体一样绕中心转动0,rvvr(r r)一、速度分布一、速度分布58式中:式中:2222.rrconst 外部流速与成反比。外部流速与成反比。59二、压力分布二、压力分布(1 1)旋涡外部:)旋涡外部:流动定常且无
28、旋流动定常且无旋由拉格朗日积分式确定速度和压力的关由拉格朗日积分式确定速度和压力的关系。略去质量力有:系。略去质量力有:212pvc由边界条件由边界条件,02vr该处该处0 0,则有,则有0 0 压力分布压力分布为:为:2012ppv(rr)601.1.愈靠近中心,速度值愈大,压力愈小。愈靠近中心,速度值愈大,压力愈小。2.在旋涡边界上,在旋涡边界上,r=rr=r,v v v vr r,如相应,如相应 的压力为的压力为p p 则则2012rrppv即在边缘即在边缘r r上,压力较无穷远处下降了上,压力较无穷远处下降了 212rv结论:结论:vr=vr |r=r角标是角标是r而不是而不是r61(
29、2 2)旋涡内部)旋涡内部: :定常有旋流动定常有旋流动因有离心力,伯努利方程因有离心力,伯努利方程212lpvc流线为同心圆族,流线为同心圆族,不同流线上压力不同不同流线上压力不同。由欧拉方程(给定边界条件,略去质量力)由欧拉方程(给定边界条件,略去质量力)求解:求解:1xxxyvvpvvxxx 1yyxyvvpvvxxy 拉格朗日积分不适用拉格朗日积分不适用也不适用也不适用62因因 v vx xyy,v vy y,代入上式得:,代入上式得:21pxx21pyy将以上两式分别乘将以上两式分别乘 的的dx dx 和和 dydy,再相加得:,再相加得:2()ppxdxydydxdydpxy222
30、()2xydpd或或积分得:积分得:22221()22xypcvc63在旋涡边缘上:在旋涡边缘上:201,2rrrrrvvpppv旋涡内部压力分布:旋涡内部压力分布:22012rppvv代入代入212pvc20rcpv得得 旋涡中心旋涡中心0,0rv旋涡中心的相对压力为旋涡中心的相对压力为20rppv 旋涡外部旋涡外部:速度越大压力越小速度越大压力越小旋涡内部旋涡内部:速度越小压力越小速度越小压力越小2021rrvppp6465兰金(兰金(rankinerankine)涡)涡: :具有自由表面流场中的铅具有自由表面流场中的铅 直方向的圆柱形涡。直方向的圆柱形涡。压力分布:压力分布:240222
31、22022rpgzrpprrgz( 0) r( 0) r重力的影响重力的影响- -+ +66r rr r r区域,水面凹区域,水面凹陷与陷与2 2成反比成反比 )()2(2)()(22222222rrrrgrrrrrgrz 67 水面旋涡的涡量在中心附近为最大,向水面旋涡的涡量在中心附近为最大,向外逐渐减少,作为一种近似,可认为是由涡外逐渐减少,作为一种近似,可认为是由涡量均匀分布的核心部分(称强迫涡)和其外量均匀分布的核心部分(称强迫涡)和其外部的无旋流动(称自由涡)两部分所组成。部的无旋流动(称自由涡)两部分所组成。可直接应用本节的结果。可直接应用本节的结果。实际情况:实际情况: 兰金组合
32、涡在气象学中常被用作台风中心兰金组合涡在气象学中常被用作台风中心的物理模型。的物理模型。 68气旋气旋69讨论1.1.由伯努利方程知不计重力影响下,速度大则由伯努利方程知不计重力影响下,速度大则压力小。对于兰金组合涡,为什么旋涡中心速压力小。对于兰金组合涡,为什么旋涡中心速度小压力最低?而在旋涡边缘速度大压力反而度小压力最低?而在旋涡边缘速度大压力反而比旋涡中心大比旋涡中心大, ,能否从物理上解释能否从物理上解释? ? 讨论讨论70例例5.2例例5.2 设流场的速度分布为设流场的速度分布为v vr r, v v= r= r, constconst,求涡线方程。,求涡线方程。解:解:1()2yx
33、zvvxysinsinxvvry容易验证容易验证: : x xy yxyzdxdydz涡线方程涡线方程:积分得积分得: : = =1 1 = =2 2 垂直于垂直于xoyxoy平面的直线平面的直线coscosyvvrx71例例5.3 5.3 在大圆内包含了在大圆内包含了a a、bcbc、d d四个旋涡四个旋涡, , 其强度分别为其强度分别为: : a = b = c = d = 求求: :沿周线沿周线s s的速度环量的速度环量解解: 由斯托克斯定理由斯托克斯定理 ssabcdsv ds s s所围区域内速度环量为零,但该区域内并所围区域内速度环量为零,但该区域内并非处处无旋。非处处无旋。例例5.35.372求求: :绕圆心的速度环量绕圆心的速度环量例例5.4 已知速度场已知速度场22xyvxy22yxvxysin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 能源开发项目协议
- 学校艺术团队化妆师招聘协议
- 电力工程临时用工合同
- 办公楼新风系统安装协议
- 生态农业招投标与合同绿色生产
- 通信基站电力安全检查规定
- 通信行业会计专员财会聘用合同
- 企业内训会议室租赁合同样本
- 文化市场物业人员聘用合同
- 通信设备销售合同管理细则
- 水灾期间的食品安全措施
- 公安机关大型活动安全管理
- 上下班安全交通培训
- 股骨头置换术后护理查房
- 《招商招租方案》课件
- 第六单元中国特色社会主义生态文明建设及结语练习-2023-2024学年中职高教版(2023)中国特色社会主义
- 临水临电施工组织方案
- 2024布鲁氏菌病查房
- 结算周期与付款方式
- 成人氧气吸入疗法-中华护理学会团体标准
- 【S钢材民营企业经营管理探究17000字(论文)】
评论
0/150
提交评论