双缝干涉条纹间距公式的推导两种方法_第1页
双缝干涉条纹间距公式的推导两种方法_第2页
双缝干涉条纹间距公式的推导两种方法_第3页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、双缝干涉条纹间距公式的推导双缝干涉条纹间距公式的推导y·d O·dx22如图建立直角坐标系,其x 轴上横坐标为 d 的点与2d 的点为两波源。这两个波源的振动情况完全相同,则这两个波源发生干涉时的加强区为到两个波源的距离2差为波长整数倍 n零除外)的双曲线簇。其中d ,0 、 d ,0 为所有双曲线的公共焦点。这个双曲线簇的方程为:222dn222x2 n 2解得:d2l24 d 2 n2 2上式中, d 的数量级为 104m, 为10 7m。故 d 2 d2,x 的表达式简化为:x n 4 dl 2其中 l 的数量级为 100 m,l22d 的数量级为 10 4 m 。故

2、d104,x 的表达式简化为:可见,交点横坐标成一等差数列,公差为 l ,这说明: d(1)条纹是等间距的;(2)相邻两条纹的间距为 l 。d至此,证明了条纹间距公式: x l 。d杨氏双缝干涉条纹间距到底是不是相等的?海军航空工程学院 李磊 梁吉峰 选自物理教师 2008 年第 11 期在杨氏双缝干涉实验中,在现行的高中物理教科书中得出相邻的明纹(或者暗纹)中心间距为:xL/d ,其中 L为双缝与屏的间距, d 为双缝间距,对单色光而言,其波长 为定值,所以我们得出的结论是干涉图样为等间距的一系列明暗相同的条纹,但是在现行的高中物理教科书中所给的干涉条纹的照片却并非如此,如 图 1。我们可以

3、看到只是在照片中央部分的干涉条件是等间距的,但是在其边缘部分的条纹的间距明显与中央部分的条纹间距不同。问题到底出在哪里呢?首先我们来看现行的教科书上对于杨氏双缝干涉的解释,如图 2。设定双缝 S1、 S2的间距为 d,双缝所在平面与光屏 P平行。双缝与屏之间的垂直距离为L,我们在屏上任取一点 P1,设定点 P1与双缝 S1、 S2的距离分别为 r1和 r2,O为双缝 S1、S2的中点,双缝 S1、S2的连线的中垂线与屏的交点为P0,设 P1与 P0的距离为 x,为了获得明显的干涉条纹,在通常情况下L>>d,在这种情况下由双缝 S1、S2发出的光到达屏上 P1 点的光程差 r 为S2

4、M r 2 r 1 dsin ,( 1)其中 也是 OP0 与 OP1所成的角。因为 d<<L, 很小,所以sin tan 因此 r dsin dxL3)x当rdL ±k 时,屏上表现为明条纹,其中 k0,1,2,当rdxL ±( k21 ) 时,屏上表现为暗条纹,其中是k0,1,2,。(3)我们继续算得光屏上明条纹和暗条纹的中心位置。1L当 x±( k2 )d 时,屏上表现为暗条纹,其中 k0,1,2,。( 4)我们还可以算出相邻明条纹(或者暗条纹)中心问的距离为Lx xk1 xk 。(5)d至此我们得出结论:杨氏双缝干涉条纹是等间距的。问题就在于以

5、上的推导过程中,我们用过两次近似,第 1次是在运用公式 rr2r1dsin 的时候,此式近似成立的条件是 S1P1S2很小,因此有 S1MS2P1,S1M OP1,因此 P0OP1 S2S1M,如果要保证 S1P1S2很小,只要满足 d<<L即可,因此 r dsin 是满足的。第 2 次近似是因为 d<<L, 很小,所以 sin tan 。下面我们通过表 1 来比较 sin 与 tan 的数值。表11°2°3°4°5°6°7°sin tan 8°9°10°11°

6、sin tan tan sin 从表 1中我们可以看出当 6°时, %。因此当 6°时,相对误差就超过了 %,因此我们通常说 sin tan 成立的条件是 5°,当 sin > 5°时, sin tan 就不再成立。而在杨氏双缝干涉实验中,很小所对应的条件应该是 x<<L,这应该对应于光屏上靠近P0的点,在此种情况下上述的推导过程是成立的,干涉条纹是等间距的。而当 x 较大时,也就是光屏上离 P0较远的点所对应的 角也较大,当 > 5°时, sin tan 就不再成立,上述推导过程也就不完全成立了,( 2)式就不能再用了

7、。此时 sinxL2x2所以, r dsin dxL2± k ,屏上表现为明条纹,其中 2xk0,1,2, r dsin dxL2 x21±( k 2 ),屏上表现为暗条纹,其中k0, 1, 2,。因此可以得到光屏上明纹或者暗纹的中心位置为x±Lkd2,屏上表现为明条纹,其中 k 0,1,2,x±1L(k 2)2 ,屏上表现为暗条纹,其中2 1 2 2d 2 (k )2 2 2k0,1, 2,。则相邻的明条纹中心问距为x 明xk1明一 xk 明L(k 1)d 2 (k 1)2 2Lk d 2 k2 2邻暗条纹中心间距为x 暗xk1暗一 xk 暗1L(k 1 )2d 2 (k 1 21)2 21L(k 12)2 1 2 2d 2 (k 21)2 2由上式可见相邻的明、暗条纹就不再是等间距的了,这也正如教科书上的照片所示的条纹分布。 下面我们通过一个实例来定量计算等间距条纹的条数。例 1:用氦氖激光器(频率为×

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论