大学物理系列之简谐振动PPT学习教案_第1页
大学物理系列之简谐振动PPT学习教案_第2页
大学物理系列之简谐振动PPT学习教案_第3页
大学物理系列之简谐振动PPT学习教案_第4页
大学物理系列之简谐振动PPT学习教案_第5页
已阅读5页,还剩61页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、会计学1大学物理系列之简谐振动大学物理系列之简谐振动如:机械振动、电磁振动、分子振动、原子振动。 任一物理量在某一定值附近往复变化均称为振动. 机械振动 物体围绕一固定位置往复运动. 如一切发声体、心脏、海浪起伏、地震以及原子的振动等.机械振动的特点:(1)有平衡点。 (2)且具有重复性。即具有周期性振动。 第1页/共66页机械振动的分类: (1)按振动规律分: 简谐、非简谐、随机振动。(2)按产生振动原因分: 自由、受迫、自激、参变振动。(3)按自由度分: 单自由度系统、多自由度系统振动。(4)按振动位移分: 角振动、线振动。(5)按系统参数特征分: 线性、非线性振动。 简谐振动 最简单、最

2、基本的振动.简谐运动复杂振动合成分解 第2页/共66页第3页/共66页一 弹簧振子的振动 弹簧振子若弹簧本身的质量和摩擦力忽略不计,即只有弹性恢复力作用下的质点的模型称为弹簧振子 平衡位置物体所受合力为零,物体所在位置称为平衡位置。kl0 xmoAA自然长度 l0平衡位置(原点)00Fx第4页/共66页xxFmoAA任意位置makxFkaxm mk2令xa2xtx222dd222d0dxxt 即简谐振动的微分方程该微分方程的通解)cos(tAx简谐振动的运动学方程A,为求解时的积分常量,由初始条件决定。km 是由谐振子本身的性质决定的,称为振动系统的固有角频率。 第5页/共66页A简谐振动的加

3、速度A简谐振动的振动方程简谐振动的速度AAA最大最大最大AAA第6页/共66页弹簧振子在弹性恢复力作用下的振动是简谐振动。 (1)运动学定义:物体位移随时间按余弦函数(或正弦函数)规律变化的运动称为简谐振动。 x = A cos(t + )(2)动力学定义:物体仅受下式的合力作用的振动称为简谐振动。 F = - k x(3)简谐振动的运动微分方程 d2x / dt2+ 2 x = 0 简谐振动定义 第7页/共66页讨论: 竖直方向的弹簧振子的运动是否简谐振动? 第8页/共66页 试证明,若选取受力平衡点作为位置坐标原点,垂直弹簧振子与水平弹簧振子的动力学方程和振动方程相同。平衡点在受力平衡点小

4、球受弹性力大小选取受力平衡点作为位置坐标原点小球在为置坐标 处所受弹性力合外力振动方程A动力学方程微分方程的解:均与水平弹簧振子结果相同第9页/共66页三 描写简谐振动的三个特征量 从描写简谐振动的运动学方程 中可看出,一个简谐振动系统,若确定了A、,则简谐振动系统的振动就完全确定了,因此称这三个量为简谐振动的三个特征量。 )cos(tAx1 振幅A 物体的运动范围为: ,将物体离开平衡位置的最大位移的绝对值称为振动的振幅。AxA平衡位置X-AA第10页/共66页2 周期和频率 (1) 周期完成一次振动需时间-振动的周期。)()(Ttxtx)(cos)cos(TtAtA(2)频率 每秒内振动的

5、次数称为频率,单位:赫兹(HZ) 2T2TmkkmT2对弹簧振子:T122T角频率 tx图AAxT2TtoglT22周期和频率仅与振动系统本身的物理性质有关第11页/共66页3 相位 )cos(tAxAA相位 :是界定振子在时刻 的运动状态的物理量运动状态要由位置 和速度 同时描述,而 和 的正负取决于 ,不是指开始振动,而是指开始观测和计时。所谓时质点的运动状态AA位置速度初始条件即为初相 :是时,振子的相位。tx图AAxT2TtoX20( 取 或 )第12页/共66页22020vxA4 常数 和 的确定A000vv xxt初始条件cos0Ax sin0Av)sin(tAv)cos(tAxk

6、m 00tanx v 0, 0, 0vxt已知 求2 0 2 0sin 取第13页/共66页某物体沿 X 轴作简谐运动,振幅 A = 0.12周期 T = 2 s,t = 0 时x0 = 0.06 m处初相 ,t = 0 .5 s 时的位置 x, 速度 v, 加速度 a物体背离原点移动到位置A = 0.12 m,T = 2 s , = 2 / T = rad s -1 , 将 = / 3 rad 及 t = 0 .5 s 代入谐振动的 x, v, a 定义式得x A cos ( t )0.104 (m)A0.19 ( m s -1 )A1.03 ( m s -2 )x = A cos ( t

7、)由简谐振动方程t = 0 时0.06 = 0.12 cos 得 = / 3再由题意知 t = 0 时物体正向运动,即A0且 = / 3,则 在第四象限,故取第14页/共66页0.040.0412简谐振动的曲线完成下述简谐振动方程A (m)T = 2 (s) = 2 / T = (rad /s )0.042SI0cos0 xA0sin0vA t=0时2 第15页/共66页在不能延伸的轻线下端悬一小球m,小球在重力和拉力作用下,在铅直平面内作往复运动,这样的振动系统称为单摆。 悬线与铅直方向之间的角度作为小球位置的变量,称为角位移,规定悬线在铅直线右方时,角位移为正 。 悬线的张力和重力的合力沿

8、悬线的垂直方向指向平衡位置。 sinmgF二 单摆的振动 模型 平衡位置-铅直方向0F 任意位置第16页/共66页当很小时 sin ( 5 )mgF 符合简谐振动的动力学定义由牛顿第二定律mgmatmgdtdml22lg2令0222dtd)cos(tmsinmgFglT22第17页/共66页第18页/共66页)(sin21212222ktAmmEv)(cos2121222ptkAkxE线性回复力是保守力,作简谐运动的系统机械能守恒 以弹簧振子为例)sin()cos(tAtAxvkxF22pk21AkAEEEmk /2(振幅的动力学意义)总机械能振幅不变第19页/共66页简 谐 运 动 能 量

9、图txtv221kAE 0tAxcostAsinvv, xtoT4T2T43T能量oTttkAE22pcos21tAmE222ksin21均随时间而变且能量相互转换均随时间而变且能量相互转换变到最大时变为零系统的机械能守恒。及A变为零变到最大时第20页/共66页例 如图,有一水平弹簧振子,弹簧的倔强系数k=24N/m,重物的质量m=6kg,重物静止在平衡位置上。设以一水平恒力F=10N向左作用于物体(不计摩檫),使之由平衡位置向左运动了,此时撤去力F。当重物运动到左方最远位置时开始计时,求物体的运动方程。解:JE5 . 005. 010mkEA204. 0245 . 022)/1 (2624s

10、mk)2cos(204. 0 tx,0Axt时第21页/共66页 例 质量为 的物体,以振幅 作简谐运动,其最大加速度为 ,求:kg10. 0m100 . 122sm0 . 4(1)振动的周期; (2)通过平衡位置的动能;(3)总能量;(4)物体在何处其动能和势能相等?解 (1)2maxAaAamax1s20s314. 02T第22页/共66页(2)J100 . 23222maxmax,k2121AmmEv(3)max,kEE J100 . 23(4)pkEE 时,J100 . 13pE由222p2121xmkxE2p22mEx 24m105 . 0cm707. 0 x第23页/共66页第24

11、页/共66页描述谐振动的方法:2. 曲线法:3. 旋转矢量法:1. 函数法:cos()xAt第25页/共66页oAx cos()xAt xt+t = t : 初相位t+ :相位11t = 0AAx = A cos ( t )第26页/共66页oAx cos()xAt t+t = t : 初相位t+ :相位11t = 0AAx = A cos ( t )02t 物体正越过原点, 以最大速率运动.下个时刻要向x 轴的负方向运动.第27页/共66页oAx cos()xAt t+t = t : 初相位t+ :相位11t = 0AAx = A cos ( t ) A物体在负向位移极大处, 速度为零.下个

12、时刻要向x 轴的正方向运动. t第28页/共66页oAx cos()xAt t+t = t : 初相位t+ :相位11t = 0AAx = A cos ( t )032t 物体正越过原点, 以最大速率运动.下个时刻要向x 轴的正方向运动.第29页/共66页oAx cos()xAt t+t = t : 初相位t+ :相位11t = 0AAx = A cos ( t )A0t 物体在正向位移极大处, 速度为零.下个时刻要向x 轴的负方向运动.第30页/共66页oAx cos()xAt t : 初相位t+ :相位11t = 0AA循环往复A旋转一周,投影点作一次全振动,所需时间为谐振周期。 2T第3

13、1页/共66页oAx xt+t = t 11t = 0AAx = A cos ( t )旋转矢量的模 A 振幅旋转角速度逆时针 角频率与x轴的0时刻夹角 初相位t 时刻与x轴的夹角( t )相位矢量 画法小结第32页/共66页旋转矢量端点 M 作匀速圆周运动振子的运动速度(与 X 轴同向为正)A其 速率AtAXAAXOtO 旋转矢量端点 M 的加速度为法向加速度,其大小为A振子的运动加速度(与 X 轴同向为正)At和任一时刻的 和 值,其正负号仅表示方向。同号时为加速异号时为减速第33页/共66页xxvxxvxxvxxv振动质点位移、速度与特征点 (t=0时对应的)x00时在1,4象限v00时

14、在3,4象限第34页/共66页例1. 一物体沿 x 轴作简谐振动,A= 12cm, T = 2s 当t = 0时, x0= 6cm, 且向x正方向运动。解:(1)由旋转矢量图看cm()x0t 121 1 3 2 3 (2)t =0.5s 时, 物体的位置、速度、加速度。2cos()xAtT sin()vAt 2cos()aAt 212cos(0 5)23 10.4 (cm) 118.9(s ) 2103(cm s ) 2 求(1) 初位相。0?(2)t s 时第35页/共66页0.040.0412简谐振动的曲线完成下述简谐振动方程A = 0.04 (m)T = 2 (s) = 2 / T =

15、(rad /s )0.042A= / 2 t = 0v0 从 t = 0 作反时针旋转时,A矢端的投影从x=0向X轴的负方运动,即 ,与 已知 X t 曲线一致。v0SI第36页/共66页弹簧振子x0 = 0t = 0 时v0 = 0.4 ms -1m = 510 -3 kgk = 210 -4 Nm -1 完成下述简谐振动方程v0km0.2 (rad s 1)x0v02 (m)x0 = 0已知相应的旋转矢量图为20.2(SI)v0第37页/共66页AAx2AtoabxAA0讨论 相位差:表示两个振动状态相位之差 . 1)对同一简谐运动,相位差可以给出两运动状态间变化所需的时间.)()(12t

16、t)cos(1tAx)cos(2tAx12tttat3 TTt6123v2Abt第38页/共66页0 xto同步 2)对于两个同频率的简谐运动,相位差表示它们间步调上的差异.(解决振动合成问题))cos(111tAx)cos(222tAx)()(12tt12xto为其它超前落后txo反相第39页/共66页例 已知振动曲线求初相位及相位。 如图所示的xt振动曲线,已知振幅A、周期T、且t=0 时 ,求:2Ax (1)该振动的初相位; (2)a、b两点的相位; (3)从t=0到a、b两态所用的时间是多少? 第40页/共66页方法二,用旋转矢量法 由已知条件可画出t=0时振幅矢量,同时可画出,时刻的

17、振幅矢量图如图所示。由图可知,(3)(1)3(2)0at2bt623TTta TTtb125/23/2/2/ 第41页/共66页例 已知振动曲线求初相位及相位。 如图所示的xt振动曲线,已知振幅A、周期T、且t=0 时 ,求:2Ax (1)该振动的初相位; (2)a、b两点的相位; (3)从t=0到a、b两态所用的时间是多少? 解:方法一 (1) 由题图可知, t=0时, 2cosAAx21cos30sinAdtdxv3)3cos(tAx第42页/共66页(2) 由题图a点,cos()aaxAtA 则a点的相位0at 由题图b点, cos()0bbxAt 2bt 0)sin(tAdtdxv故b

18、点的相位为 :2bt (3) 设从t=0到两态所用的时间为ta、tb 0at2bt623TTtaTTtb125/23/2/2/第43页/共66页第44页/共66页且 相同同在 X 轴合成振动用旋转矢量法可求得合成振动方程与计时起始时刻有关合成初相分振动初相差与计时起始时刻无关,但它对合成振幅属相长还是相消合成起决定作用第45页/共66页解析法推导: )cos()cos(221121tAtAxxxtAtAtAtAsinsincoscos sinsincoscos22221111()()tAAtAAsinsinsincoscoscos22112211tAtAsinsincoscos()tAcos其

19、中, 2211coscoscosAAA2211sinsinsinAAA解之可得: ()12212221cos2AAAAA22112211coscossinsinAAAAtg第46页/共66页xxtoo212k)cos()(21tAAxA21AAA1A2AT1)相位差212k), 2 1 0( ,k)cos(212212221AAAAA 讨论相互加强第47页/共66页xxtoo21AAA)cos()(12tAAx)cos(212212221AAAAAT2A21AA2)相位差) 12(12k) , 1 0( ,k若为其它值,则 处于与之间相互削弱第48页/共66页为了突出重点,设两分振动的振幅相等

20、且初相均为零。合振动此合振动不是简谐振动,一般比较复杂,只介绍一种常见现象:频率为 的简谐振动频率为 的简谐振动第49页/共66页若与较大且相差不大,可看作呈周期性慢变的振幅合振动频率相对较高的简谐振动 频率较大而频率之差很小的两个同方向简谐运动的合成,其合振动的振幅时而加强时而减弱的现象叫拍.第50页/共66页可看作呈周期性慢变的振幅合振动频率相对较高的简谐振动1 秒9 Hz8 Hz(包络线)两分振动的频率1 Hz合振动频率8.5 Hz合振幅每变化一周叫做一拍,单位时间出现的拍次数叫拍频。拍的频率为两个分振动的频率之差。385 Hz383 Hz听到的音频384 Hz强度节拍性变化2 Hz第5

21、1页/共66页)(sin)cos(21221221222212AAxyAyAx质点运动轨迹1) 或2012xAAy12)cos(11tAx)cos(22tAyyx1A2Ao (椭圆方程) 讨论第52页/共66页yx1A2Ao2)12xAAy123)2121222212AyAxtAxcos1)2cos(2tAy)(sin)cos(21221221222212AAxyAyAxxy1A2Ao第53页/共66页简谐运动的合成图两相互垂直同频率不同相位差第54页/共66页4. 振动方向垂直、不同频率的谐振动的合成 轨迹曲线称为李萨如图形。一般轨迹曲线复杂,且不稳定。-1-0.50.51-1-0.50.5

22、1-1-0.50.51-1-0.50.51-1-0.50.51-1-0.50.51xy4:26:410:8:xyN N 由切点数之比及已知频率可测未知频率。yxyxNN 2:13:25:4可以证明:两振动的频率之比 成整数时, 合成轨迹稳定。yx 图形形状还与位相差及振幅有关46第55页/共66页其合运动一般较复杂,且轨迹不稳定。但当 为两个简单的整数之比时可以得到稳定轨迹图形,称为李萨如图形例如第56页/共66页(1)0 ;(2)4 cm;(4)8 cm。结束选择请在放映状态下点击你认为是对的答案 两个同方向同频率的谐振动,振动方程为x1=610-2 cos (5t + ),x2=210-2 sin ( 5 t )2 则其合振动的振幅为谐振动(3)4 cm;第57页/共66页用旋转矢量描绘振动合成图第58页/共66页 任意形状的刚体悬挂后绕一固定轴作小角度摆动,称为复摆。 设质心到转轴距离为L,则当其摆角为时刚体受到的重力矩为: sinmglM当很小时 sin ( 5 )mglM根据转动定理:22dtdIIMImglIMdtd22022Imgldtd【复摆】oC*lP(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论