高中圆锥曲线定点定直线问题(共11页)_第1页
高中圆锥曲线定点定直线问题(共11页)_第2页
高中圆锥曲线定点定直线问题(共11页)_第3页
高中圆锥曲线定点定直线问题(共11页)_第4页
高中圆锥曲线定点定直线问题(共11页)_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上定点、定直线、定值专题1、已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为,最小值为()求椭圆的标准方程;()若直线与椭圆相交于,两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标【标准答案】(I)由题意设椭圆的标准方程为, (II)设,由得,.以AB为直径的圆过椭圆的右顶点,(最好是用向量点乘来),解得,且满足.当时,直线过定点与已知矛盾;当时,直线过定点综上可知,直线过定点,定点坐标为2、已知椭圆C的离心率,长轴的左右端点分别为,。()求椭圆C的方程;()设直线与椭圆C交于P、Q两点,直线与交于点S。试问:

2、当m变化时,点S是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,请说明理由。解法一:()设椭圆的方程为。1分,。4分椭圆的方程为。5分()取得,直线的方程是直线的方程是交点为7分,若,由对称性可知交点为若点在同一条直线上,则直线只能为。8分以下证明对于任意的直线与直线的交点均在直线上。事实上,由得即,记,则。9分设与交于点由得设与交于点由得10,12分,即与重合,这说明,当变化时,点恒在定直线上。13分解法二:()取得,直线的方程是直线的方程是交点为7分取得,直线的方程是直线的方程是交点为若交点在同一条直线上,则直线只能为。8分以下证明对于任意的直线与直线的交点均在直线

3、上。事实上,由得即,记,则。9分的方程是的方程是消去得以下用分析法证明时,式恒成立。要证明式恒成立,只需证明即证即证式恒成立。这说明,当变化时,点恒在定直线上。解法三:()由得即。记,则。6分的方程是的方程是7分由得9分即12分这说明,当变化时,点恒在定直线上。13分3、已知椭圆的中心在原点,焦点在轴上,椭圆上的点到焦点的距离的最小值为,离心率为 ()求椭圆的方程; ()过点作直线交于、两点,试问:在轴上是否存在一个定点,为定值?若存在,求出这个定点的坐标;若不存在,请说明理由解:(I)设椭圆E的方程为,由已知得:。2分椭圆E的方程为。3分()法一:假设存在符合条件的点,又设,则:。5分当直线

4、的斜率存在时,设直线的方程为:,则由得7分所以9分对于任意的值,为定值,所以,得,所以;11分当直线的斜率不存在时,直线由得综上述知,符合条件的点存在,起坐标为13分法二:假设存在点,又设则:=.5分当直线的斜率不为0时,设直线的方程为,由得7分9分设则11分当直线的斜率为0时,直线,由得:综上述知,符合条件的点存在,其坐标为。13分4、已知椭圆的焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率,过椭圆的右焦点作与坐标轴不垂直的直线,交椭圆于、两点。 (I)求椭圆的标准方程; ()设点是线段上的一个动点,且,求的取值范围; ()设点是点关于轴的对称点,在轴上是否存在一个定点,使得、三点共线?

5、若存在,求出定点的坐标,若不存在,请说明理由。解法一: (I)设椭圆方程为,由题意知故椭圆方程为 ()由(I)得,所以,设的方程为()代入,得 设则,由,当时,有成立。()在轴上存在定点,使得、三点共线。依题意知,直线BC的方程为, 令,则的方程为、在直线上,在轴上存在定点,使得三点共线。解法二:()由(I)得,所以。设的方程为 代入,得设则 当时,有成立。 ()在轴上存在定点,使得、三点共线。 设存在使得、三点共线,则, , 即 ,存在,使得三点共线。1点A、B分别是以双曲线的焦点为顶点,顶点为焦点的椭圆C长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆C上,且位于x轴上方, (1)求椭圆C

6、的的方程;(2)求点P的坐标;(3)设M是椭圆长轴AB上的一点,点M到直线AP的距离等于|MB|,求椭圆上的点到M的距离d的最小值。2已知在平面直角坐标系中,向量,且 .(I)设的取值范围;(II)设以原点O为中心,对称轴在坐标轴上,以F为右焦点的椭圆经过点M,且取最小值时,求椭圆的方程.3设A、B是椭圆3x2y2=上的两点, 点N(1,3)是线段AB的中点.(1)确定的取值范围, 使直线AB存在, 并求直线AB的方程.(2)线段AB的垂直平分线与椭圆相交于C,D两点, 求线段CD的中点M的坐标(3)试判断是否存在这样的, 使得A、B、C、D四点在同一个圆上?并说明理由.xyOPQREFT4设

7、是抛物线上相异两点,且,直线与轴相交于()若到轴的距离的积为,求的值;()若为已知常数,在轴上,是否存在异于的一点,使得直线与抛物线的另一交点为,而直线与轴相交于,且有,若存在,求出点的坐标(用表示),若不存在,说明理由5已知点A、B的坐标分别是,.直线相交于点M,且它们的斜率之积为2.()求动点M的轨迹方程;()若过点的直线交动点M的轨迹于C、D两点, 且N为线段CD的中点,求直线的方程.6已知,点在轴上,点在轴的正半轴,点在直线上,且满足,.()当点在轴上移动时,求动点的轨迹方程;()过的直线与轨迹交于、两点,又过、作轨迹的切线、,当,求直线的方程.7已知点C为圆的圆心,点A(1,0),P

8、是圆上的动点,点Q在圆的半径CP上,且 ()当点P在圆上运动时,求点Q的轨迹方程; ()若直线与()中所求点Q的轨迹交于不同两点F,H,O是坐标原点,且,求FOH的面积 8如图,在直角坐标系中,已知椭圆的离心率e,左右两个焦分别为过右焦点且与轴垂直的直线与椭圆相交M、N两点,且|MN|=1() 求椭圆的方程;() 设椭圆的左顶点为A,下顶点为B,动点P满足,()试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆上. 9已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过、三点()求椭圆的方程;()若直线:()与椭圆交于、两点,证明直线与直线的交点在直线上10如图,过抛物线x2=4y的对称轴上任一

9、点P(0,m)(m>0)作直线与抛物线交于A、B两点,点Q是点P关于原点的对称点。 ()设点P分有向线段所成的比为,证明()设直线AB的方程是x2y+12=0,过A、B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程。11已知椭圆的方程为,双曲线的左、右焦点分别是的左、右顶点,而的左、右顶点分别是的左、右焦点。(1)求双曲线的方程;(2)若直线与双曲线C2恒有两个不同的交点A和B,且(其中O为原点),求的范围。12如图,过抛物线的对称轴上任一点作直线与抛物线交于A、B两点,点Q是点P关于原点的对称点 设点P满足(为实数),证明:;设直线AB的方程是,过A、B两点的圆C与抛物线在点A处

10、有共同的切线,求圆C的方程13一束光线从点出发,经直线上一点反射后,恰好穿过点()求点关于直线的对称点的坐标;()求以、为焦点且过点的椭圆的方程;()设直线与椭圆的两条准线分别交于、两点,点为线段上的动点,求点 到的距离与到椭圆右准线的距离之比的最小值,并求取得最小值时点的坐标14已知平面上一定点和一定直线为该平面上一动点,作垂足为,.(1) 问点在什么曲线上?并求出该曲线方程;(2) 点是坐标原点,两点在点的轨迹上,若求的取值范围15如图,已知E、F为平面上的两个定点 ,且,·,(G为动点,P是HP和GF的交点)(1)建立适当的平面直角坐标系求出点的轨迹方程;(2)若点的轨迹上存在两个不同的点、,且线段的中垂线与GFPHE(或的延长线)相交于一点,则(为的中点)16已知动圆过定点,且与直线相切.(1) 求动圆的圆心轨迹的方程;(2) 是否存在直线,使过点(0,1),并与轨迹交于两点,且满足?若存在,求出直线的方程;若不存在,说明理由.17已知若动点P满足 (1)求动点P的轨迹方C的方程; (2)设Q是曲线C上任意一点,求Q到直线的距离的最小值.18已知抛物线x=2py(p>0),过动点M(0,a),且斜率为1的直线L与该抛物线交于不同两点A、B,|

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论