版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、固体物理习题解答固体物理习题解答Chapter 4 Chapter 4 problemsproblems(b) The time-average total energy per atomSubstitute us = u cos(t sKa) into the expression)(2sin)cos1 (sin)(sinsin )(cos)cos1(21)(sin21 )sin(sin)cos()cos1(21 )(sin21 sin)sin( cos)cos()cos(21 )(sin21 ) 1(cos)cos(21 )sin(2122222222222222222222sKatKaK
2、asKatKasKatKaCusKatuMsKatKasKatKaCusKatuMKasKatKasKatsKatCusKatuMKastusKatuCsKatuMEssssssssThe total energy average over time)cos22(4 sin21)cos1 (212141 )(2sin)cos1 (sin )(sinsin)(cos)cos1(2121 )(sin2121 222222222222220220222/20KaCuuMNKaKaNCuuNMsKaxKaKasKaxKasKaxKadxCusKaxdxuMEdtEsswhere N is the nu
3、mber of the atoms.The time-average total energy per atom222)cos1 (2141 /uKaCuMNEFrom the dispersion relation, 2/sin422KaMCwe have).cos1 (212/sin4122KaCKaCM2222221 )cos1 (2141uMuKaCuMThus 2. Continuum wave equationWe have the equation of the motion)2(1122ssssuuuCdtudMIn the long wavelength limit, a,
4、the difference of the displacements of nearest atoms is very small. Hence us(t) could be treated as a continuous function u(x, t).22222 )(2)()(dxudCaadxduadxduCxuaxuaxuCdtudMxaxThen we haveThe solution of this equation is )(exp),(0tKxiutxuwith the dispersion relation, 2/sin422KaMCIn the long wavelen
5、gth limit, Ka 1,2222)2/(4KvKaMCwhereMCav22Therefore the equation of motion reduces to the continuum wave equation22222dxudvdtud3. Basis of two unlike atomsFrom the equation of motions)2()2(12221221ssssssvuuCdtvdMuvvCdtudMWe have the solutions)(exp)(exptKaivvtKaiuuss(1)(2)Substitute Eq(2) into Eq(1)C
6、veCuvMCueCvuMiKaiKa2) 1(2)1 (2212(3)(4)At the Brillouin zone boundary K = Kmax = /a, we haveCvvMCuuM2222120)2(0)2(2212vCMuCMi.e.122 when , 0MCvor222 when , 0MCui.e. these two lattices act as if decoupled: one lattice remains at rest while the other lattice moves4. Kohn anomalyConsidering the interac
7、tions between p nearest planes, we have the dispersion relation012)cos1 (2pjjjKaCMSupposingpaapkACp0sinwe have1012)cos1 (sin2 )cos1 (2ppppKapaapkMApKaCMwith A and k0 are constants and p runs over all integers,Then102sinsin2ppKaapkMAKWhen K = k01022sin2papkMAKinfinite is sin )/( 0sin 02002limppapkaka
8、pki.e. is infinite when K = k0.K2Thus a plot of 2 vs K (or vs K) have a vertical tangent at K = k0: there is a kink at k0 in the phonon dispersion relation (K).5. Diatomic chainWe have the equation of motions)(10)()()(10122122ssssssssssvuvuCdtvdMuvCuvCdtudMThe solutions are)(exp)(exptKaivvtKaiuussSu
9、bstitute the solutions into equation of motionsCveCuMvCueCvMuiKaiKa11)10(11)10(22The homogenous linear equations have a solution only if the determinant of the coefficients of the unknown u, v vanishes.011 )exp(10)exp(10 1122MCiKaCiKaCMCthe dispersion relation is)cos1 (20111122KaMCor0)cos1 (20222242
10、KaCCMM2/1MCK a022022Discussions:(1) K = 00 and ,2222MC(2) K = /aMCMC2 and ,2022Obviously, the acoustic branch indicates the interactions between molecules while the optical branch shows the interactions inside the molecules. 6. Atomic vibrations in metalrRSuppose the restoring force is due to the el
11、ectric charge within the sphere of the radius r centered to the equilibrium position.)()(rEqrFAs shown in the figure, the electric field in a sphere with the charge homogenous distributed isrRerreRrrrqrE323324/34/3)(The equation of motionrReFqdtrdM3222i.e.322222with , 0MRerdtrd(a) The frequency of a
12、 single ion oscillationFor a harmonic oscillation )exp(0tirrwhere 2/132MRe(b) Estimate the value of this frequency for sodiumSodium has a bcc structure with lattice constant a = 4.225 (p. 23).Then R = 31/2a/4 = 1.83 =1.83E8 cmM 23Mp 3.84E23 g 4.8E10/3.43E23(1.83E8)31/2 3.3E13 s1(c) Estimate the velo
13、city of the sound in metalSuppose the dispersion relation is = vgK for metal, where vg is constant.In estimation, we take K = /a = /4.225E8 1E8 cm-1vg = /K 3E13/1E8 =3E5 cm/s7. Soft phonon modes(a) Force constant of the Coulomb interactionThe Coulomb between atom s and atom s+p is spspsppspuurererU0
14、22) 1() 1()(Then 20232222221 ) 1(221) 1( ) 3(21)()(pCparppparparspspCUrepaeOrUrUparUrUwhere 332) 1(2apeCppC(b) The dispersion relation03200332203320102)cos1 () 1(21sin )cos1 () 1(21sin4 )cos1 () 1(22)cos1 (2 )cos1 (2)cos1 (2 )cos1 (22ppppppppCRpppKapKapKapaeKaMpKaapeMKaMpKaCMKaCMpKaCM132202)cos1 () 1(21sin i.e.ppppKaKa3220/ and /4 whereaeM(c) Discussions0313202) 12(21 )cos1 () 1(1nppnpp(1) At the first Brillouin zone boundary, Ka = 1313130387)2() 12( nnnnnnnn13202471nn2 is negative when 1374nn(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年四川建筑职业技术学院马克思主义基本原理概论期末考试模拟题附答案解析(夺冠)
- 2025年河曲县幼儿园教师招教考试备考题库附答案解析(夺冠)
- 2025年新疆科信职业技术学院单招综合素质考试题库附答案解析
- 2025年贵州开放大学马克思主义基本原理概论期末考试模拟题带答案解析(必刷)
- 2025年福州黎明职业技术学院单招职业适应性测试题库附答案解析
- 2025年武汉工程大学马克思主义基本原理概论期末考试模拟题带答案解析(必刷)
- 2025年金陵科技学院马克思主义基本原理概论期末考试模拟题附答案解析(必刷)
- 2025年丽水学院马克思主义基本原理概论期末考试模拟题带答案解析(必刷)
- 2025年平坝县幼儿园教师招教考试备考题库附答案解析(夺冠)
- 2025年南京机电职业技术学院马克思主义基本原理概论期末考试模拟题及答案解析(必刷)
- 2024年度高速公路机电设备维护合同:某机电公司负责某段高速公路的机电设备维护2篇
- 《城镇液化石油气加臭技术规程》
- 2024-2025学年上学期南京初中语文九年级期末试卷
- 医院消防安全宣传教育
- 新高考数学之圆锥曲线综合讲义第26讲外接圆问题(原卷版+解析)
- 中药汤剂煎煮技术规范-公示稿
- 新版出口报关单模板
- 微型课题研究的过程与方法课件
- 药学导论绪论-课件
- 14K118 空调通风管道的加固
- 加油站财务管理制度细则
评论
0/150
提交评论