




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Chapter 6Time And Frequency Characterization of Signals And Systems罗罗 欣欣UESTCUESTC2012-2013(1)Introductionn In time-domain, the LTI system is characterized by h(t) or hn;n In frequency-domain, the LTI system is characterized by H(j) or H(ej).n In analyzing LTI system, it is often particularly conven
2、ient to utilize the frequency domain. differential and difference equations and convolution operations in the time domain become algebraic operations in the frequency domain.n In system design, there are typically both time-domain and frequency-domain considerations.6.1 The Magnitude-phase Represent
3、ation of the Fourier TransformFor signal x(t) :)()()()(jXjFTejXjXtx)()()(jeXjjjDFTeeXeXnx For signal xn :)()()()(jjeXjXeXjX、 Magnitude spectrum Phase spectrum )2cos(32)2cos()2cos(211)(321ttttx032112, 8, 432193. 0, 7 .2, 63212 . 7, 1 . 4, 2 . 1321),(21jjP| ),(|21jjP12:|(,)|: 0MagnitudeP jjPhase12:1:(
4、,)MagnitudePhaseP jj12:(,)MagnitudePhaseP jjConclusion: Effects of Phase Not on signal energy distribution as a function of frequency Can have dramatic effect on signal shape/characterConstructive/Destructive interference Is that important? Depends on the signal and the context6.2 The Magnitude-phas
5、e Representation of the Frequency Response of LTI SystemContinuous-time System characterization:Impulse response:Frequency response:)()(jHthF)()()(jXjYjH)()()()()()(jHjXjYjHjXjYgainPhase shiftDiscrete-time System characterization:Impulse response:Frequency response:)()()()()()(jjjjjjeHeXeYeHeXeYgain
6、Phase shift)(jFeHnh)()()(jjjeXeYeH6.2.1 Linear and Nonlinear PhaseLinear phase:Nonlinear phase:Example:Result: Linear phase simply a rigid shift in time, no distortion(Magnitude Response is constant)Nonlinear phase distortion as well as shiftkjH)(functionNonlinearjH)()()()()()(000phaseLineartjHejHtt
7、xtytjLinear phaseX2(j) = X1(j)e-j(Linear phase)(Nonlinear phase)(Original signal)Effect of Linear and Nonlinear PhaseAll-Pass System1| )(|1| )(|jeHjHq The characteristics of an all-pass system are completely determined by its phase-shift characteristics.6.2.2 Group DelayDefinition:Example:)()(jHdd)(
8、)()()()()(0000delaysignalttjHejHttxtytjNote: if the values of are restricted to lie between and -, we obtain the principal-phase function.)(jHLinear with near 0Impulse response and output of an all-pass system with nonlinear phase6.2.3 Log-Magnitude and Bode PlotsMagnitude spectrum:Phase spectrum:10
9、10|()|20log |()|log()H jH jBod plots10() () log()H jH jBod plots(a logarithmic scale for frequency in CT)For real-valued signals and systems, plot for 0.2、LCCDEA Typical Bode plot for a second-order system20log|H(j)| and H(j) vs. log40dB decadeChanges by -Note: ( in discrete-time system) The magnitu
10、des of Fourier transform and frequency responses are often displayed in dB for the same reasons that they are in continuous time. However, for real hn we need only plot for 0 (with linear scale)Lowpass filter:(1) Continuous time:(2) Discrete time:ccjH| , 0| , 1)(1, |()0,|cjcH e6.3 Time-Domain Proper
11、ties of Ideal Frequency-selective Filterssin( )cth ttImpulse response of Ideal lowpass filtersin cnh nnImpulse response of Ideal Lowpass filterStep response of Ideal Lowpass filtertr=Rise timetdhts)()(1)0()()(jHdhsOvershoot by 9%Ringing (Gibbs henomenon)rippleBasic parameter of lowpass filter:6.4 Ti
12、me-Domain and Frequency-domain Aspects of Non-ideal Filtersl Sometimes we dont want a sharp cutoff.l Often have specifications in time and frequency domain Trade-offs l Realization: anticausal h(t)Homework: 6.5 6.23 6.27CT Rational Frequency Responses If the system is described by LCCDEs (Linear Con
13、stant-Coefficient Differential Equations), then kFkkjdtd)(iiNkkkMkkkjHjajbjH)()()()(00Hi(j) = First or Second-order factors22221)(2)()(11)(nnnjjjHjjH First-order system, has only one energy storing element, e.g. L or C. Second-order system, has two energy storing elements, e.g. L and C.Prototypical SystemsDT Rational Frequency Responses If the system is described by LCCDEs (Linear Constant-Coefficient Difference Equations), then kjjDFTkjjDFTeeXknxeeYkny)(,)( ijiNkkjkMkkjkjeHeaebeH)()()()(00Hi(j) = First or Seco
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 预防职业病教学课件
- 新生儿肺炎表现及预防
- 《电子产品制造技术》课件-第2章 印制电路板认知
- 冲床维修培训
- 顺利消防2023课件
- 项目现场安全课件
- 《道路勘测设计》课件-第三章 平面设计
- 音乐律动介绍课件
- 汽车配套产业基地项目风险管理方案(范文)
- 城市污水管网建设工程投资估算方案(模板)
- DB64∕T 2131-2025 建筑施工非常规高处吊篮施工规程
- 医院关于开展整治重复医疗检查检验、违规收费问题工作实施方案的通知
- 孕妇营养管理课件大全
- 2024年湖北省普通高中学业水平合格性考试数学试题(原卷版)
- 常州市钟楼区社区专职工作者招聘笔试真题2024
- 2024年安徽中医药高等专科学校招聘考试真题
- 2025年变电站春季安全生产自查报告
- 充电桩充电服务与充电站安全保障合同
- 个人信息保护合规审计师CCRC-PIPCA含答案
- 2025鄂尔多斯达拉特旗智杰教育投资有限责任公司面向社会招聘10名工作人员笔试参考题库附带答案详解析集合
- 小型引调水工程可行性研究报告
评论
0/150
提交评论