2022年广东省汕头市陈店第一初级中学高二数学理期末试题含解析_第1页
2022年广东省汕头市陈店第一初级中学高二数学理期末试题含解析_第2页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022年广东省汕头市陈店第一初级中学高二数学理期末试题含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 等差数列an的公差为2,若a2,a4,a8成等比数列,则an的前n项和sn()an(n1)     bn(n1)    c.   d. 参考答案:a略2. 有一堆形状大小相同的珠子,其中只有一粒质量比其他的轻,某同学经过思考,认为根据科学的算法,利用天平(不用砝码),二次称量肯定能找到这粒质量较轻的珠子,则这堆珠子最多有(   )粒a.

2、6         b.7         c.9         d.12参考答案:c3. m是抛物线上一点,且在轴上方,f是抛物线的焦点,以轴的正半轴为始边,fm为终边构成的的角为=60°,则             

3、;           (      )                                   

4、                    a2   b3   c4   d6参考答案:c略4. 椭圆的中心在原点,焦点在x轴上,焦距为4,离心率为,则该椭圆的方程为(    )a b c d参考答案:c8. 如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的

5、体积为a. 1           b.       c.                     d. 参考答案:d略6. 若函数的图象在点处的切线方程是,则(  )a. 0b. 2c. 4d. 4参考答案:c【分析】由切线方程可以得到,

6、从而可求两者之和.【详解】因为函数的图象在点处的切线方程是,所以,所以,故选c.【点睛】本题考查导数的几何意义,属于基础题.7. 在中, , ,点在上且满足,则等于(   )a            b           c           d  参考答

7、案:d8. 用数学归纳法证明12+22+(n1)2+n2+(n1)2+22+12时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是()a(k+1)2+2k2b(k+1)2+k2c(k+1)2d参考答案:b【考点】数学归纳法【分析】根据等式左边的特点,各数是先递增再递减,分别写出n=k与n=k+1时的结论,即可得到答案【解答】解:根据等式左边的特点,各数是先递增再递减,由于n=k,左边=12+22+(k1)2+k2+(k1)2+22+12n=k+1时,左边=12+22+(k1)2+k2+(k+1)2+k2+(k1)2+22+12比较两式,从而等式左边应添加的式子是(k+1)2+k2故选

8、b9. 把一根长为6米的细绳任意做成两段,则稍短的一根细绳的长度大于2米的概率是(   )a         b       c.         d参考答案:d10. z是纯虚数的一个充要条件是       a       b  

9、;            c         d 参考答案:d略二、 填空题:本大题共7小题,每小题4分,共28分11. 除以的余数是.参考答案:112. 在探究实系数一元二次方程的根与系数的关系时,可按下述方法进行:设实系数一元二次方程在复数集内的根为,则方程可变形为,展开得,比较可以得到:类比上述方法,设实系数一元次方程(且)在复数集内的根为,则这个根的积    

10、      参考答案:13. 如图,函数 (其中0)的图象与y轴交于点. 设p是图象上的最高点,是图象与轴的交点, =_.参考答案:略14. 给出下列命题:存在实数,使sincos=1,函数y=sin(+x)是偶函数;直线x=是函数y=sin(2x+)的一条对称轴;若、是第一象限的角,且,则sinsin其中正确命题的序号是         参考答案:【考点】命题的真假判断与应用 【专题】函数的性质及应用【分析】求出sincos取值的范围,可判断;根据诱导公

11、式化简函数解析式,进而根据余弦型函数的和性质,可判断;根据正弦型函数的对称性,可判断;举出反例=390°、=45°,可判断【解答】解:sincos=sin2,1?,故不存在实数,使sincos=1,故错误;函数y=sin(+x)=cosx,满足f(x)=f(x),是偶函数,故正确;由2x+=+k,kz得:x=+k,kz,当k=1时,直线x=是函数y=sin(2x+)的一条对称轴,故正确;=390°、=45°是第一象限的角,且,但sin=sin=,故错误故正确的命题的序号是:,故答案为:【点评】本题考查的知识点是命题的真假判断与应用,此类题型往往综合较多的

12、其它知识点,综合性强,难度中档15. 5名同学排成一排照相,其中同学甲站在中间,则不同的排法种数为_(用数字作答).参考答案:24【分析】根据题意,不用管甲,其余4人全排列即可,根据排列数的定义可得出结果.【详解】根据题意,甲在中间位置固定了,不用管,其它4名同学全排列即可,所以排法种数共有种.故答案为:24.【点睛】本题是排列问题,有限制条件的要先安排,最后安排没有条件要求的即可,属于一般基础题16. 已知i是虚数单位,复数z满足=,则复数z=_参考答案:【分析】先对进行化简,再由复数的除法运算,即可求出结果.【详解】因为,所以.故答案为【点睛】本题主要考查复数的运算,熟记运算法则即可,属于

13、基础题型.17. 已知函数,则曲线在处的切线斜率为()a. 2b. 1c. 1d. 2参考答案:a【分析】求得的导函数,令求出,则求得曲线在处的切线斜率。【详解】的导数为令可得,解得,曲线在处的切线斜率为 故选a【点睛】本题考查导数的几何意义,解题的关键是明确切点处的导函数值即为斜率,属于一般题。 三、 解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18. 如图,某炮兵阵地位于a点,两观察所分别位于c,d两点已知acd为正三角形,且dc= km,当目标出现在b点时,测得bcd=75°,cdb=45°,求炮兵阵地与目标的距离参考答案:【考点

14、】解三角形【专题】应用题;数形结合;数形结合法;解三角形【分析】由三角形内角和定理得出cbd=60°,在bcd中,由正弦定理得出bd,再在abd中利用余弦定理解出ab即可【解答】解:cbd=180°cdbbcd=180°45°75°=60°,在bcd中,由正弦定理,得:bd=在abd中,adb=45°+60°=105°,由余弦定理,得ab2=ad2+bd22adbdcos105°=3+()22×××=5+2ab=答:炮兵阵地与目标的距离为km【点评】本题考查了解三角

15、形的实际应用,属于基础题19. 已知在等差数列an中,a1=1,a3=3(1)求an;(2)令bn=2an,判断数列bn是等差数列还是等比数列,并说明理由参考答案:【考点】等比数列的通项公式;等差数列的通项公式【分析】(1)利用等差数列的通项公式即可得出;(2)利用等比数列的通项公式及其定义即可判断出结论【解答】解:(1)设数列an的公差是d,则,故an=1+2(n1)=2n3(2)由(1)可得,是一常数,故数列bn是等比数列20. 设数列的前项n和为,若对于任意的正整数n都有.(1)设,求证:数列是等比数列,并求出的通项公式。(2)求数列的前n项和.  参考答案:解:(1)对于任意

16、的正整数都成立, 两式相减,得, 即,即对一切正整数都成立。数列是等比数列。由已知得   即首项,公比,。略21. 选修4-5:不等式选讲已知函数.(1)求不等式的解集;(2)若对恒成立,求a的取值范围.参考答案:(1)因为,所以当时,由得;当时,由得;当时,由得.综上,的解集为.(2)(方法一)由得,因为,当且仅当取等号,所以当时,取得最小值,所以当时,取得最小值,故,即的取值范围为.(方法二)设,则,当时,取得最小值,所以当时,取得最小值,故,即的取值范围为.22. 命题: 关于的不等式,对一切恒成立; 命题: 函数在上是增函数.若或为真, 且为假,求实数的取值范围.参考答案:解:由于p为真,故有ks5u=4-16<0   解得 -2<<2  2分再由q为真,可得   3-2>1    解得  <1 4分 

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论