汽车相关结构与解释_第1页
汽车相关结构与解释_第2页
汽车相关结构与解释_第3页
汽车相关结构与解释_第4页
汽车相关结构与解释_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、汽车相关结构与解释1.涡轮增压器2.汽车的差速器3.汽车上的双曲线齿轮4.汽车驱动桥上的锁止机构5.自动变速箱6.从驱动形式看汽车7.奥迪A6无级手动一体式变速器8.轿车转向器9.电动助力转向器10.常用的制动装置11.盘式制动器12. 从ASR到ESP13. 鼓式制动器14. 电子制动系统涡轮增压器参加竞赛的跑车或方程式赛车一般在发动机上装有涡轮增压器,以使汽车迸发出更大的功率。发动机是靠燃料在气缸内燃烧作功来产生功率的,输入的燃料量受到吸入气缸内空气量的限制,所产生的功率也会受到限制,如果发动机的运行性能已处于最佳状态,再增加输出功率只能通过压缩更多的空气进入气缸来增加燃料量,提高燃烧作功

2、能力。在目前的技术条件下,涡轮增压器是唯一能使发动机在工作效率不变的情况下增加输出功率的机械装置。构造 涡轮增压器是由涡轮室和增压器组成的机器,涡轮室进气口与排气歧管相连,排气口接在排气管上;增压器进气口与空气滤清器管道相连,排气口接在进气歧管上。涡轮和叶轮分别装在涡轮室和增压器内,二者同轴刚性联接。原理 涡轮增压器实际上是一种空气压缩机,通过压缩空气来增加进气量。它是利用发动机排出的废气惯性冲力来推动涡轮室内的涡轮,涡轮又带动同轴的叶轮,叶轮压送由空气滤清器管道送来的空气,使之增压进入气缸。当发动机转速增快,废气排出速度与涡轮转速也同步增快,叶轮就压缩更多的空气进入气缸,

3、空气的压力和密度增大可以燃烧更多的燃料,相应增加燃料量和调整一下发动机的转速,就可以增加发动机的输出功率了。技术 涡轮增压器安装在发动机的进排气歧管上,处在高温,高压和高速运转的工作状况下,其工作环境非常恶劣,工作要求又比较苛刻,因此对制造的材料和加工技术都要求很高。其中制造难度最高的是支承涡轮轴运转的“浮式轴承”,它工作转速可达10万转分以上,加上环境温度可达六、七百度以上,决非一般轴承所能承受,由于轴承与机体内壁间有油液做冷却,又称“全浮式轴承”。缺点 另外涡轮增压器虽然有协助发动机增力的作用,但也有它的缺点,其中最明显的是,“滞后响应”,即由于叶轮的惯性作用对油门骤时

4、变化反应迟缓,即使经过改良后的反应时间也要1.7秒,使发动机延迟增加或减少输出功率。这对于要突然加速或超车的汽车而言,瞬间会有点提不上劲的感觉。改进 但是涡轮增压器毕竟是无本生利的事情,它是利用发动机的废气工作的,这些废气的能量如果不加以利用也会白白地浪费掉。因此,自从涡轮增压器面世以来,人们就经常对它进行技术改造,例如提高加工精度,尽量减少涡轮与涡轮室内壁的间隙,以便提高废气能量利用率;采用新型材料陶瓷,利用陶瓷的耐热高,刚度强,重量轻的优点,可以将涡轮增压器做得更加紧凑,体积更少,而且能减少涡轮的“滞后响应”时间。在最近30年时间里,涡轮增压器已经普及到许多类型的汽车上,它弥补了

5、一些自然吸气式发动机的先天不足,会发动机在不改变气缸工作容积的情况下可以提高输出功率10%以上,因此许多汽车制造公司都采用这种增压技术来改进发动机的输出功率,藉以实现轿车的高性能化。(99.7.29)涡轮增压器之二提高压缩比是提高发动机功率的措施之一。而提高压缩比有两种途径,一种是采用高顶活塞及改变曲轴行程或者改变燃烧室形状,这是牵一动百的举措,花费较大;另一是增加进气量的方法,采用强制性方式加大空气灌输量,就是涡轮增压器的方法,这是一种不改变发动机基本结构,花费较少的做法。在“涡轮增压器”一文,已经简单介绍了它的构造、原理等方面的知识,现在再谈一谈它的具体形式。(1)电磁阀、(2)气缸燃烧室

6、、(3)中冷器、(4)空气滤清器、(5)叶轮、(6)涡轮、(7)排气旁通阀差别以前废气涡轮增压器多用在柴油发动机上,例如载重汽车和大客车上的柴油发动机。现在不少轿车汽油机上也使用废气涡轮增压器。轿车用的废气涡轮增压器都采用单入口涡轮外壳,也就是说只利用废气排气的压力能量,不需使用其它的辅助能量。由于轿车发动机的转速范围大,因此废气涡轮增压器必须要有调节装置,以使发动机能在一定转速范围内获得比较恒定的增压压力。另外,汽油机是点燃式点火,它的压缩比是有一定范围限制的,过高就会引发爆燃。因此,还要有爆燃检测及控制机构,随时调整点火提前角。安装轿车的废气涡轮增压器一般安装在排气管附近,涡轮和叶轮分别装

7、在涡轮室和增压器内,二者同轴刚性联接,同步旋转。调节目前的涡轮增压器的调节装置大都在排气侧进行调节,当不需要增压时,例如怠速或者有爆燃先兆时,一部分排气会通过旁通阀泄出而不进入涡轮增压器。当发动机转速每分钟达到1800转时,电磁阀就会关闭旁通阀让排气流指向涡轮一侧,使涡轮转动。另外还有一种设计,就是调节涡轮叶片的角度,通过阻力的改变来调节涡轮的转速,从而改变增压量。冷却对空气进行冷却可以使空气收缩增大密度,在同等容积下塞进更多空气,还可以防止爆燃。因此轿车的涡轮增压器都安装有中间冷却器,这种中间冷却器一般用空气冷却,安装在发动机散热器前面、旁边或者单独一个位置,利用汽车迎面气流或者自身风扇冷却

8、。关键涡轮增压器的关键零件是轴承。这种根据润滑形式命名的轴承被称为“全浮式轴承”,工作转速极高,工作环境恶劣。因此,保证润滑是非常重要的事情。如果因油压低导致机油供给缓慢,就会损坏轴承从而导致涡轮增压器失效。在正常的发动机启动是不会发生此类故障的,但如果发动机更换机油和机油过滤器后第一次启动,就会产生机油供给缓慢现象,使轴承缺乏机油润滑。在这种情况下,启动后要怠速运转3分钟左右,不可直接将转速提升到涡轮增压器启动转速。同样,在高速及上坡后也不要使发动机立即停止,要使发动机继续怠速运行1分钟左右,使仍继续空转的涡轮增压器轴承不会缺油。因此,使用涡轮增压器汽车的司机,一定要遵循厂家的指示操作,还要

9、十分注意机油的质量,不宜将涡轮增压器汽车视同一般汽车进行操作。汽车的差速器汽车发动机的动力经离合器、变速器、传动轴,最后传送到驱动桥再左右分配给半轴驱动车轮,在这条动力传送途径上,驱动桥是最后一个总成,它的主要部件是减速器和差速器。减速器的作用就是减速增矩,这个功能完全靠齿轮与齿轮之间的啮合完成,比较容易理解。而差速器就比较难理解,什么叫差速器,为什么要“差速”?汽车差速器是驱动轿的主件。它的作用就是在向两边半轴传递动力的同时,允许两边半轴以不同的转速旋转,满足两边车轮尽可能以纯滚动的形式作不等距行驶,减少轮胎与地面的摩擦。汽车在拐弯时车轮的轨线是圆弧,如果汽车向左转弯,圆弧的中心点在左侧,在

10、相同的时间里,右侧轮子走的弧线比左侧轮子长,为了平衡这个差异,就要左边轮子慢一点,右边轮子快一点,用不同的转速来弥补距离的差异。如果后轮轴做成一个整体,就无法做到两侧轮子的转速差异,也就是做不到自动调整。为了解决这个问题,早在一百年前,法国雷诺汽车公司的创始人路易斯.雷诺就设计出了差速器这个玩意。普通差速器由行星齿轮、行星轮架(差速器壳)、半轴齿轮等零件组成。发动机的动力经传动轴进入差速器,直接驱动行星轮架,再由行星轮带动左、右两条半轴,分别驱动左、右车轮。差速器的设计要求满足:(左半轴转速)+(右半轴转速)=2(行星轮架转速)。当汽车直行时,左、右车轮与行星轮架三者的转速相等处于平衡状态,而

11、在汽车转弯时三者平衡状态被破坏,导致内侧轮转速减小,外侧轮转速增加。这种调整是自动的,这里涉及到“最小能耗原理”,也就是地球上所有物体都倾向于耗能最小的状态。例如把一粒豆子放进一个碗内,豆子会自动停留在碗底而绝不会停留在碗壁,因为碗底是能量最低的位置(位能),它自动选择静止(动能最小)而不会不断运动。同样的道理,车轮在转弯时也会自动趋向能耗最低的状态,自动地按照转弯半径调整左右轮的转速。当转弯时,由于外侧轮有滑拖的现象,内侧轮有滑转的现象,两个驱动轮此时就会产生两个方向相反的附加力,由于“最小能耗原理”,必然导致两边车轮的转速不同,从而破坏了三者的平衡关系,并通过半轴反映到半轴齿轮上,迫使行星

12、齿轮产生自转,使外侧半轴转速加快,内侧半轴转速减慢,从而实现两边车轮转速的差异。(2000.3.9)返回汽车上的双曲线齿轮汽车上用到齿轮传动的部件有驱动桥、变速器、发动机、方向机等总成,不同的部件采用形式不同大小不一的齿轮。在各式各样的齿轮中,有一种名叫“双曲线”的齿轮,在汽配市场上还有专门用于它的润滑油叫做“双曲线齿轮油”。这种齿轮用在驱动桥的主减速器上。主减速器为什么要用双曲线齿轮,它有什么好处?首先要明确主减速器的功能。汽车驱动桥上的主减速器不但要减速增扭,还要改变传动方向,将变速器输出轴的转动改变90度方向,变为车轮的转动。这种功能是依靠主减速器的一对齿轮来完成的,这对齿轮多用螺旋锥齿

13、轮或者双曲线齿轮。轿车上的主减速器一般采用双曲线齿轮。这是因为双曲线齿轮与螺旋锥齿轮比较,前者运转噪音少,工作更平稳,轮齿强度较高,而且还具有主动齿轮轴线可以相对从动齿轮轴线偏移的特点,这一点对于汽车的技术性能非常重要,工程师可以在不改变发动机的位置尺寸就可以直接改变驱动桥的离地间隙,也就是改变整部车的离地间隙。例如有些汽车主减速器的双曲线齿轮的偏移距达30多毫米,在保持一定的离地间隙情况下,可降低主动齿轮和传动轴的位置,使车身重心降低,有利于提高汽车高速行驶的平稳性。两齿轮轴线相交    主动轮向下偏移有些汽车在同一车架上生产轿车和运动休闲车,其底盘的参数变换也

14、是利用了双曲线齿轮这一特性。由于有这些优点,目前汽车的驱动桥已经趋向于用双曲线齿轮,实际上近年进口汽车基本上是采用双曲线齿轮,国产汽车也有许多车型采用双曲线齿轮,并已经越来越多地在中、重型货车上得到采用。但双曲线齿轮工作时,齿面间会有较大的相对滑动,且齿面压力很大,齿面油膜容易被破坏。为减少摩擦,提高效率,必须要采用含有防刮伤添加剂的专用双曲线齿轮油,绝不能用其它的齿轮油代替,否则将使齿面迅速磨损和擦伤,严重影响汽车的运行状态。(2000.5.12)返回汽车驱动桥上的锁止机构我们曾经讨论过汽车的差速器(参阅技术漫谈底盘部分"汽车的差速器"一文),它的作用就是在向两边半轴传递

15、动力的同时,允许两边半轴以不同的转速旋转,满足两边车轮尽可能以纯滚动的形式作不等距行驶,减少轮胎与地面的摩擦。在汽车拐弯时,外侧轮有滑拖的现象,内侧轮有滑转的现象,两个驱动轮产生两个方向相反的附加力,通过半轴反映到半轴齿轮上,迫使行星齿轮产生自转,使外侧半轴转速加快,内侧半轴转速减慢,从而解决了车辆使用的一方面问题。也就是说,驱动轴分为两半后,各半轴的转动速度是依靠两侧轮子的地面阻力进行调节的。虽然这样可以解决转弯时两侧轮子转速不同的问题,但是同时也引起了另一方面的问题,当一边车轮陷入泥潭,失去地面附着力时,左右两半轴的阻力矩相差悬殊,造成一侧轮子飞转而另一侧停止。在这个时候,我们又希望汽车的

16、动力传递与地面阻力无关,驱动轴不要分成两半。为了解决这个矛盾,在一些汽车上装置了锁止机构。在汽车正常行驶时锁止机构不起作用,一旦发生单侧打滑,锁止机构立即动作,强行带动慢半轴转动或制止快半轴飞转。一种自动锁止机构的简单原理如图所示,它包含超越离合器和齿轮变速装置两大部分。超越离合器有两个环,一个与半轴(红色)花键联接,另一个环(绿色)上的齿轮1与齿轮2啮合,齿轮2与齿轮3做成一体,齿轮3又与固联在差速器壳体上的齿轮4啮合。差速器壳和双联齿轮2-3通过轴承安装在与车身固连的外壳(灰色)上。超越离合器两环的相对转速有一个临界值,由汽车最小转弯半径决定。汽车正常行驶时,两半轴的转速变化不会超出最小转

17、弯半径所规定的范围,此时超越离合器超越运行,两环互相分离,锁止机构不起作用(类似骑自行车下坡,车轮飞转而你的双脚可以静止)。一旦出现打滑(超出临界转速),超越离合器就会接合,传动轴锥齿轮6的动力经齿轮6-5-4-3-2-1传到超越离合器,最后由接合状态下的超越离合器强行带动半轴转动(类似正常行驶时的骑自行车,你的脚所施加的力能够全部传递到车轮)。具有自动锁止功能的差速器使得汽车的通过性和操纵性同时得到改善。自动变速箱返回自动波(自动变速器)的汽车,能根据路面状况自动变速变矩,驾驶者可以全神贯地注视路面交通而不会被换档搞得手忙脚乱。自动波对于行外人士颇显神秘,要详细剖析自动波涉及不少专业知识,希

18、望本文能够给大家一个初步的印象。汽车自动波常见的有三种型式,分别是液力自动波(简称AT)、机械无级自动波(简称CVT)、电控机械自动波(简称AMT)。目前轿车普遍使用的是AT,AT几乎成为自动波的代名词。本文先着重介绍AT。AT结构    与手动波相比,液力自动波(AT)在结构和使用上有很大的不同。手动波主要由齿轮和轴组成,通过不同的齿轮组合产生变速变矩;而AT是由液力变扭器、行星齿轮和液压操纵系统组成,通过液力传递和齿轮组合的方式来达到变速变矩。其中液力变扭器是AT最具特点的部件,它由泵轮、涡轮和导轮等构件组成,直接输入发动机动力传递扭矩和离合作用。原理

19、0;   泵轮和涡轮是一对工作组合,它们就好似相对放置的两台风扇,一台风扇吹出的风力会带动另一台风扇的叶片旋转,风力成了动能传递的媒介,如果用液体代替空气成为传递动能的媒介,泵轮就会通过液体带动涡轮旋转,再在泵轮和涡轮之间加上导轮,通过反作用力使泵轮和涡轮之间实现转速差就可以实现变速变矩了。由于液力变矩器自动变速变矩范围不够大,因此在涡轮后面再串联几排行星齿轮提高效率,液压操纵系统会随发动机工作变化自行操纵行星齿轮,从而实现自动变速变矩。辅助机构    自动换档不能满足行驶上的多种需要,例如停泊、后退等,所以还设有干预装置即手动拨杆,标志P(停

20、泊)、R(后档)、N(空档)、D(前进),另在前进档中还设有"2"和"1"的附加档位,用以起步或上斜坡之用。由于将其变速区域分成若干个变速比区段,只有在规定的变速区段内才是无级的,因此AT 实际上是一种介于有级和无级之间的自动变速器。 优缺点   AT不用离合器换档,档位少变化大,连接平稳,因此操作容易,既给开车人带来方便,也给坐车人带来舒适。但缺点也多,一是对速度变化反应较慢,没有手动波灵敏,因此许多玩车人士喜欢开手动波车;二是费油不经济,传动效率低变矩范围有限,近年引入电子控制技术改善了这方面的问题;三是机构复杂,修理困

21、难。在液力变扭器内高速循环流动的液压油会产生高温,所以要用指定的耐高温液压油。另外,如果汽车因蓄电池缺电不能启动,不能用推车或拖车的方法启动。如果拖运故障车,要注意使驱动轮脱离地面,以保护自动波齿轮不受损害。CVTCVT采用传动带和可变槽宽的棘轮进行动力传递,即当棘轮变化槽宽肘,相应改变驱动轮与从动轮上传动带的接触半径进行变速,传动带一般用橡胶带、金属带和金属链等。CVT是真正无级化了,它的优点是重量轻,体积小,零件少,与AT比较具有较高的运行效率,油耗较低。但CVT的缺点也是明显的,就是传动带很容易损坏,不能承受较大的载荷,只能限用于在1升排量左右的低功率和低扭矩汽车,因此在自动变速器占有率

22、约4%以下。AMTAMT在机械变速器(手动波)原有基础上进行改造,主要改变手动换档操纵部分。即在总体传动结构不变的情况下通过加装微机控制的自动操纵系统来实现换挡的自动化。因此AMT实际上是由一个 机器人系统来完成操作离合器和选档 的两个动作。由于AMT能在现生产的手动波基础上进行改造,生产继承性好,投入的责用也较低,容易被生产厂接受。AMT的核心技术是微机控制,电子技术及质量将直接决定AMT的性能与运行质量。据悉我国今后的汽车自动波国产化将重点发展AMT。从驱动形式看汽车现代轿车主要有两种驱动方式:F.R和F.F。F.R车叫做前置发动机后轮驱动,是传统的驱动形式。它是前轮转向后轮驱动,发动机输

23、出动力通过离合器变速器传动轴输送到驱动桥上,在此减速增扭后传送到后面的左、右半轴上,驱动后轮使汽车运行,前后轮各行其职,转向与驱动分开,负荷分布比较均匀。F.F车叫做前置发动机前轮驱动,则是70年代末才真正兴起的驱动形式。它将变速器之后的东西都往前挪,变速器与驱动桥做成一体,固定在发动机旁将动力直接输送到前轮上,前轮承担了转向和驱动两副重任,省略了长长的传动轴,缩短了传递动力的距离,减少功率传递损耗也就相应节省了燃油。没有了传动轴,轿车地板不必为它凸出一条通道有利车厢内的布置,车架不必为后驱动桥腾出空间位置,可以降低车身高度有助于行车的稳定性。发动机可以横置缩短了机厢的长度,在汽车总长不变的情

24、况下增大乘座厢的长度和空间。前轮成为驱动轮变成了“拉”汽车前进,有利于方向控制。由于有上述优点,所以F.F车风靡车坛。但是事物总有二重性,由于F.F车上的机械大件头大多集中在前面,所以前轮负荷比后轮大,遭到意外碰撞时容易产生变形,波及前轮定位;当汽车启动瞬间和上徒坡时车身重心都会向后移,会减少前轮的正压力从而降低了车轮的牵引力,但这时汽车的阻力也是最大,这一增一减令F.F车的启动加速度和爬坡能力都会逊色于F.R车,因此F.F形式多用于自重量不大的轿车。另外从安全的角度来分析,轿车的前置发动机起到一种安全屏障的作用,F.R车的发动机是纵置的,而F.F车的发动机多是横置的,两者比较,F.R车在安全

25、保障系数方面比F.F车高一些。另外还有一种驱动形式叫做后置发动机后轮驱动,即R.R车。它似乎是F.F车的翻版,只不过是将车前的“五脏六腑”移到车后,这样一来似乎保持了F.F车的优点也消除了F.F车的缺点,但同时也会增添另外的麻烦。首先变速器、离合器、油门等操纵杆要通过狭窄的车底,从车头驾驶员位置连通到车尾发动机的位置上,发动机移到后面使冷却问题不好解决,乘员厢前面失去了发动机做“安全屏障”,汽车前端要经过加固处理而使成本上升,目前只有象保时捷这样的高级跑车才用R.R形式,其它小车很少沾边。不过对于有充分空间位置的大客车来讲,既能解决上述麻烦又能减低废气窜入车厢的程度,因此很流行R.R形式。从驱

26、动形式可以知道,轿车上的许多装置形式都有合理的一面也有不合理的一面,要满足或提高某些性能要求很可能要牺牲或降低其它某些性能的要求,尽善尽美的东西似乎并不存在。 奥迪A6无级手动一体式变速器9月,装备multitronic无级手动一体式变速箱的奥迪A6面市。这种奥迪A6的变速器是一种无级变速器,它融合自动和手动变速器的优点,既操作简单,又能充分体验驾驶的乐趣。奥迪A6的multitronic变速箱还预设了6个手动挡位,在换挡时是连续进行而分级变化,避免了顿挫的操作,无论驾驶者还是乘坐者,感觉都会舒适。据一汽大众介绍,在试车现场上驾驶者驾驶安装了无级变速器的奥迪A6轿车,0100公里小时加速度,比

27、装5速手动自动一体化变速箱的车快了1.4秒,比装有5速手动变速箱的相同车型也快0.1秒,驾驶者可以体验到更快的加速性能。在油耗上,比5速手动自动一体式变速箱的奥迪,百公里减少燃油消耗0.6升,比装5速手动变速箱的奥迪百公里油耗少0.2升。无级变速传动的正式名称应为无段变速传动,英文全称Continuouslv Variable Transmission,简称CVT。无极变速器和普通自动变速器的最大区别,是它省去了复杂而又笨重的齿轮组合变速传动,变速机构的核心组件是两组带轮,通过改变驱动轮与从动轮金属带的接触半径进行变速。无级变速器的传动效率高且稳定,变速范围可达56,传动效率可高达95%,而采

28、用液力变矩器的自动变速器传动效率只有87%左右,因为无极变速只需要1组两个带轮及金属带(链)便可改变传动比,而不象4档或5档的变速器需要有45组齿轮。奥迪A6无级变速器当前常用的无极变速器的传动构件主要由轮带驱动,它有两种形式,分别是金属带轮式和金属链带轮式。金属带轮式采用一根非常坚韧的金属带与一对可作轴向移动,宽度可调的型带轮配合。金属带紧压在型带轮上,通过改变带轮槽的宽度来改变金属带与带轮接触的直径,从而改变传动比。金属带由高强度柔性金属带与型金属推块组成,金属推块厚约2毫米,长宽约为25毫米×12毫米,呈现形,材质具有极强硬度及耐磨性,型金属推块叠串于柔性金属带上,形成驱动金属

29、带。金属链带轮式的结构形式与金属带轮式相似,只是以金属链条代替金属带。奥迪A6multitronic无级变速器采用了金属链条这一形式。上述两种无级变速器系统都由机械变速装置、液压控制装置和电控装置三部分组成,它包括机械变速装置中起动用的接合机构(湿式多片离合器、液力变矩器或电磁偶合器)。变速器工作时,电控单元ECU接受发动机节气门开度及变速器输出轴转速两个信号,计算后向液压控制装置发出指令,由液压控制装置输出油压控制离合器及伺服油缸工作,以改变动力传递方向及改变主、从带轮的直径以实现无级变速。ECU还会根据发动机工况及传递动力情况对链条与带轮之间的压紧力进行调节,防止金属链带与V型带轮之间打滑

30、摩擦产生过热而损坏链带。过去无级变速器未被广泛采用,因为它受尺寸、重量、变速比范围、变速效率、安装及制造费用等方面的限制,只能用于低功率的小型车上。现在奥迪的无级变速器已经克服了使用上的限制,multitronic无级变速器可以承受输出299牛顿米的扭力,完全可以匹配奥迪A6 2.4升V6发动机,因为V6发动机输出扭力只有230牛顿米。奥迪A6multitronic无级变速器的变速比范围达到6:1,由于是无级变速可不用再设高、中、低档位,只有停泊档(P)、倒档(R)、空档(N)、前进档(D),但为了体现驾驶乐趣,附设了虚拟档位以模仿手动变速器,采用()档增速和()档减速的形式。轿车转向器轿车转

31、向器机构涉及整车的操纵性、稳定性和安全性,它的质量也反映了车辆的质量,是直接关系到车辆性能的关键部件。早期的汽车转向是用舵柄或横杆(即一种两端带有手柄的水平杆)进行操纵,转向比是1:1,因而汽车转向时的操作是很吃力的。后来,带有齿轮减速比的转向机构很快被推广使用,但是,这种机构的方向盘不象舵柄或横杆要置放在汽车中线的位置,而是要置放在汽车的左边或右边,这样触发了方向盘位置的争论。这场争论旷日持久,导致了今天的汽车分成了两大类方向盘装置法:一类以美国,中国,俄罗斯等世界上大多数国家和地区采用的左置方向盘,实行右上左下的汽车行驶规则;另一类以英国及英联邦,日本等少数国家和地区采用的右置方向盘,实行

32、右下左上的汽车行驶规则。几十年来,各种汽车都使用蜗杆扇形齿轮转向器,现在的循环球式转向器也是这种转向器的一种变型,轿车也经常使用。在这种转向器中,蜗杆与扇形齿轮之间嵌入了钢珠,大大降低了摩擦力,使汽车的转向操纵变得比较轻松。从70年代起轿车兴起了齿轮齿条转向机构,它由方向盘、方向轴、方向节、转动轴、转向器、转向传动杆和转向轮(前轮)等组成。方向盘操纵转向器内的齿轮转动,齿轮与齿条紧密啮合,推动齿条左移动或右移动,带动转向轮摆动,从而改变轿车行驶的方向。这种转向机构与蜗杆扇形齿轮等其它类型的转向机构比较,省略了转向摇臂和转向主拉杆,具有构件简单,传动效率高的优点。而且它的逆传动效率也高,在车辆行

33、驶时可以保证偏转车轮的自动回正,驾驶者的路感性强。其实,齿轮齿条转向机构早在一世纪前的汽车萌芽发展阶段已经有了,只是那时还不完善,机件加工粗糙。1905年通用汽车卡迪拉克部的工程师将齿轮齿条转向器的设计理论化,并加工成精度很高,操纵灵活的齿轮齿条转向器,正式应用在轿车上。后来,汽车转向器的型式被蜗杆一扇形齿轮型式所垄断,但许多人仍然继续完善齿轮一齿条转向机构。由于近代材料科学的发展,大大提高了齿轮一齿条转向机构的安全可靠系数,人们再次重视这种转向机构的简单实用性,由于它具有构件少质量轻,成本低的优点,受到汽车制造商的青睐,现在大多数的轿车转向器都采用齿轮一齿条型。现代轿车马力大、速度快,为了操

34、纵的轻便和灵敏,中高档次的轿车转向器都加装了转向动力装置,又称为液压动力转向器。它具有工作无噪声,灵触度高体积小,能够吸收来自不平路面的冲击力,在现代轿车上得到十分广泛的应用。液压动力转向器的主要部件包括油泵、液压分配阀和助力器。液压分配阀与油泵组合一体,助力器与转向器装在一起,中间用油路连接。发动机通过皮带带动油泵,把油压输出到助力器。助力器壳体内是一个活塞,活塞连接着转向器的齿轮,活塞两端是腔室。当轿车直线行驶时,活塞两端压力相等,静止不动,油泵空转;当轿车转弯时,液压分配阀将油液通过变化了的通道进入了助力器的一侧,使活塞两端产生压力差,迫使活塞移动到另一侧,带动齿轮转动,“助一臂之力”。

35、这样转动方向盘的操纵力不是直接迫使车轮转向的唯一作用力了,可由助力器辅动车轮转向,减轻了驾驶者的劳动强度,减少了方向盘的转数,特别是减少了停车转向时的操纵力。现在已经出现了电子控制速度传感型的轿车动力转向器,它除了满足减少操纵力,提高灵触度外,还可以根据车速与行驶条件的不同而产生与之相适应的转向力。在停车时能提供足够的助力,随着车速的逐渐增加助力又可以逐渐减少,当高速行驶时则无助力但保持良好的路感。这种电子式的动力转向机构附有微处理机和电子转速表,电子转速表发出脉冲讯号,微处理机发出相应的指令控制动力转向机构。轿车动力转向装置是50年代在美国大型轿车上出现的事物,现在已经普及开来了。它的好处正

36、如德国奔驰汽车制造公司所描述的那样:“发动机发动后,您就得到动力转向辅助,尤其在泊车及左右移动车辆时,动力转向装置会令您能非常轻松地控制方向盘。”(99.8.26)电动助力转向器现在,动力转向系统已成为一些轿车的标准设置,全世界约有一半的轿车采用动力转向。随着汽车电子技术的发展,目前一些轿车已经使用电动助力转向器,使汽车的经济性、动力性和机动性都有所提高。电动助力转向系统的英文缩写叫“EPS”(Electrical Power Steering),它利用电动机产生的动力协助驾车者进行转向。此类系统一般由转矩传感器(3)、电控单元(微处理器)(5)、电动机(4)、减速器(2)、机械转向器(1)和

37、蓄电池电源(6)所组成(见示意图)。汽车转向时,转矩传感器检测到转向盘的力矩和转动方向,将这些信号输送到电控单元,电控单元根据转向盘的转动力矩、转动方向和车辆速度等数据向电动机控制器发出信号指令,使电动机输出相应大小及方向的转动力矩以产生助动力。当不转向时,电控单元不向电动机控制器发信号指令,电动机不工作。同时,电控单元根据车辆速度信号,通过电液转换器确定输给转向盘的作用力,减少驾车者在高速行驶时方向盘“飘”的感觉。由于电动助力转向系统只需电力不用液压,与机械式液压动力转向系统相比较省略了许多元件。没有液压系统所需要的油泵、油管、压力流量控制阀、储油罐等,零件数目少,布置方便,重量轻。而且无“

38、寄生损失”和液体泄漏损失。因此电动助力转向系统在各种行驶条件下均可节能80%左右,提高了汽车的运行性能。因此在近年得到迅速的推广,也是今后助力转向系统的发展方向。有一些汽车冠以电动助力转向,其实不是真正意义上的纯电动的助力转向,它还需要液压系统,只不过由电动机供油。传统的液压动力转向系统的油泵由发动机驱动。为保证汽车原地转向或者低速转向时的轻便性,油泵的排量是以发动机怠速时的流量来确定的。而汽车行驶中大部分时间处于高于怠速的速度和直线行驶状态,只能将油泵输出的油液大部分经控制阀回流到储油罐,造成很大的“寄生损失”。为了减少此类损失采用了电动机驱动油泵,当汽车直线行驶时电动机低速运转,汽车转向时

39、电动机高速运转,通过控制电动机的转速调节油泵的流量和压力,减少“寄生损失”。 常用的制动装置制动系统是关系到人车安全的关键部件,汽车的制动系统按照可靠、省力等要求设置了多种装置。最常见的有双回路制动系统、真空制动增压器等。轻型汽车大都采用液压制动,既然是液压就要使用管路。双回路制动系统就是指系统内有两个分别独立的液压制动管路系统,起保险的作用。一般前轮驱动轿车多采用交叉对角线形式,制动主缸的前腔与右前轮、左后轮的制动管路相通,后腔与左前轮、右后轮的制动管路相通,形成一个交叉的“X”形对角线,这样的好处是当有一个制动系统发生故障时,另一个系统依然能进行最低限度的制动,且不会发生跑偏现象。而后轮驱

40、动轿车因负荷较大,多采用前后轮分别独立制动形式,即有两套制动总泵,一套控制前轮制动,另一套控制后轮制动。真空制动增压器顾名思义就是利用真空来增压。这种装置是一种助力装置,一般安装在驾驶室仪表板前的发动机舱隔壁上,串接在制动踏板与制动主缸之间,起增加踏板力的作用,从而使驾车者省力,使得一些力气弱小的女士或老年者也可随意驾驶汽车。真空制动增压器的工作原理是利用发动机工作时产生的负压与大气压之间的压力差来迫使增压器内橡胶膜片移动,推动制动主缸的活塞,以此来减轻人踩制动踏板的力。真空制动增压器内部的橡胶膜片两边隔成两个空腔(图示A和B),在不踏动制动踏板时,发动机进气歧管的负压被引入膜片的两边空腔,压

41、力平衡,所以增压器不工作;当踏动制动踏板时,操纵杆移动令增压器橡胶膜片一边的(B)空腔的真空孔(连接发动机进气歧管)关闭,同时打开空气孔让外界空气进入,由于(B)腔的气压大于另一腔的气压,迫使橡胶膜片移动并带动制动主缸活塞移动,从而起到增压作用;当不踏动制动踏板时,操纵杆在压缩弹簧的作用下复位,又将空气孔关闭,真空孔打开,增压器两腔的气压相等,橡胶膜片又回复到原来的位置。汽车在高速行驶中急刹车,若前后轮动作或制动力不平衡时,就会发生甩尾等失控现象。从理论上说,理想的制动力分配曲线不论在车辆空载还是满载时都应当呈现抛物线状,而制动力分配曲线是由车辆的质心位置和特定的制动运动过程来决定的,即理想的

42、制动力应当是前后轮按照重量负荷成比例分配。工程师在这一思想的指引下研制出一种叫“比例阀”的部件,它是一种类似ABS作用的液压机械装置。因此,一些没有安装ABS防抱死系统的车辆,就安装了这种装置,使制动力保持一种较为理想的状态,避免或者减少失控现象的发生。制动踏板作用力及汽车载荷变化引起的作用力都会使比例阀发生作用。如果比例阀能够感知由汽车载荷变化而引起的外界作用力变化,实现感载调节,这种比例阀就称为感载比例阀。感载比例阀利用车身与车桥之间的距离变化(外界作用力)来改变弹簧的预紧力,随着车辆载荷的增加,相应地进行调整,使得在任何载荷条件下都能得到一个近似理想的制动力分配。它安装在制动总泵与后轮制

43、动分泵之间的管道上,由壳体、柱塞、阀门、弹簧等组成。壳体进油孔与制动总泵出油孔相通,出油孔与车轮制动分泵相通。当外界作用力小时,感载比例阀的柱塞在弹簧预紧力的作用下被推至最右边,两孔相通,总泵与分泵压力相等。当外界作用力大于弹簧预紧力,迫使柱塞左移,令柱塞与阀门接触并关闭了阀门,切断总泵通向分泵的通道;若外界作用力压力继续增大,又会使柱塞右移,柱塞与阀门脱离接触,阀门又被打开,总泵与分泵又相通。这样比例阀反复动作使分泵的液压得到不断调整,也即不断调整了后轮制动力。盘式制动器现代轿车的制动器的鼓式和盘式两大类型,它们各有千秋,但随着轿车车速的不断提高,近年来采用盘式制动器的轿车日益增多,尤其是中

44、高级轿车,一般都采用了盘式制动器。汽车制动简单来讲,就是利用摩擦将动能转换成热能,使汽车失去动能而停止下来。因此,散热对制动系统是十分重要的。如果制动系统经常处于高温状态,就会阻碍能量的转换过程,造成制动性能下降。越是跑得快的汽车,制动起来所产生的热量越大,对制动性能的影响也越大。解决好散热问题,对提高汽车的制动性能也就起了事倍功半的作用。所以,现代轿车的车轮除了使用铝合金车圈来降低运行温度外,还倾向于采用散热性能较好的盘式制动器。盘式制动器又称为碟式制动器,顾名思义是取其形状而得名。它由液压控制,主要零部件有制动盘、分泵、制动钳、油管等。制动盘用合金钢制造并固定在车轮上,随车轮转动。分泵固定

45、在制动器的底板上固定不动。制动钳上的两个摩擦片分别装在制动盘的两侧。分泵的活塞受油管输送来的液压作用,推动摩擦片压向制动盘发生摩擦制动,动作起来就好象用钳子钳住旋转中的盘子,迫使它停下来一样。这种制动器散热快,重量轻,构造简单,调整方便。特别是高负载时耐高温性能好,制动效果稳定,而且不怕泥水侵袭,在冬季和恶劣路况下行车,盘式制动比鼓式制动更容易在较短的时间内令车停下。有些盘式制动器的制动盘上还开了许多小孔,加速通风散热提高制动效率。反观鼓式制动器,由于散热性能差,在制动过程中会聚集大量的热量。制动蹄片和轮鼓在高温影响下较易发生极为复杂的变形,容易产生制动衰退和振抖现象,引起制动效率下降。当然,

46、盘式制动器也有自己的缺陷。例如对制动器和制动管路的制造要求较高,摩擦片的耗损量较大,成本贵,而且由于摩擦片的面积小,相对摩擦的工作面也较小,需要的制动液压高,必须要有助力装置的车辆才能使用。而鼓式制动器成本相对低廉,比较经济。所以,汽车设计者从经济与实用的角度出发,一般轿车采用了混合的形式,前轮盘式制动,后轮鼓式制动。四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%80%,因此前轮制动力要比后轮大。轿车生产厂家为了节省成本,就采用前轮盘式制动,后轮鼓式制动的方式。四轮盘式制动的中高级轿车,采用前轮通风盘式制动是为了更好地散热,至于后轮采用非通风盘式同样也是成本的原因。

47、毕竟通风盘式的制造工艺要复杂得多,价格也就相对贵了。随着材料科学的发展及成本的降低,在汽车领域中,盘式制动有逐渐取代鼓式制动的趋向。从ASR到ESP10前年,如果轿车安装有ABS(防抱死制动系统),不但说明该车的安全性能出类拔萃,而且档次也相当高级。今天,安装ABS的轿车已经相当普遍,经济型车也安装有ABS。随着对汽车安全性能的要求越来越高,一些中、高档级的轿车已经不满足于ABS,还安装了ASR(驱动防滑系统,又称牵引力控制系统)或者ESP(电控行驶平稳系统),使汽车的安全性能进一步提高。ASR的作用是当汽车加速时将滑动率控制在一定的范围内,从而防止驱动轮快速滑动。它的功能一是提高牵引力;二是

48、保持汽车的行驶稳定。行驶在易滑的路面上,没有ASR的汽车加速时驱动轮容易打滑;如是后驱动的车辆容易甩尾,如是前驱动的车辆容易方向失控。有ASR时,汽车在加速时就不会有或能够减轻这种现象。在转弯时,如果发生驱动轮打滑会导致整个车辆向一侧偏移,当有ASR时就会使车辆沿着正确的路线转向。汽车的牵引力控制可以通过减少节气门开度来降低发动机功率或者由制动器控制车轮打滑来达到目的,装有ASR的汽车综合这两种方法来工作,也就是ABSASR形式。装有ASR的车上,从油门踏板到汽油机节气门(柴油机喷油泵操纵杆)之间的机械连接被电控油门装置所取替。当传感器将油门踏板的位置及轮速信号送至控制单元(CPU)时,控制单

49、元就会产生控制电压信号,伺服电机依此信号重新调整节气门的位置(或者柴油机操纵杆的位置),然后将该位置信号反馈至控制单元,以便及时调整制动器。1,轮速传感器、2,液压调节器、3,控制单元(CPU)、4,电控油门装置、5,节气门ESP(电控行驶平稳系统,英文全称Electronic Stabilty Program)包含ABS及ASR,是这两种系统功能上的延伸。因此,ESP称得上是当前汽车防滑装置的最高级形式。ESP系统由控制单元及转向传感器(监测方向盘的转向角度)、车轮传感器(监测各个车轮的速度转动)、侧滑传感器(监测车体绕垂直轴线转动的状态)、横向加速度传感器(监测汽车转弯时的离心力)等组成。

50、控制单元通过这些传感器的信号对车辆的运行状态进行判断,进而发出控制指令。有ESP与只有ABS及ASR的汽车,它们之间的差别在于ABS及ASR只能被动地作出反应,而ESP则能够探测和分析车况并纠正驾驶的错误,防患于未然。ESP对过度转向或不足转向特别敏感,例如汽车在路滑时左拐过度转向(转弯太急)时会产生向右侧甩尾,传感器感觉到滑动就会迅速制动右前轮使其恢复附着力,产生一种相反的转矩而使汽车保持在原来的车道上。当然,任何事物都有一个度的范围,如果驾车者盲目开快车,现在的任何安全装置都难以保证其安全。据汽车工程界专家介绍,将来ASR等将变得如同ABS一样普及,因为ABS、ASR及ESP包含着技术及性

51、能上的贯通。有专家认为在一定的范围内ASR等装置有取替4轮驱动的可能。例如轿车,过去人们认为提高轿车行驶性能最好是采用4轮驱动,可是与4轮驱动相比,ASR等装置更适合轿车。这是因为4轮驱动结构复杂成本高,增加车重而且耗油,而ASR等装置结构简单安装方便,在一般城镇道路上使用效果并不差。鼓式制动器汽车制动器中有两种形式,鼓式制动器和盘式制动器,盘式制动器本网早已做过介绍。现介绍一下轿车等轻型汽车上常见的鼓式制动器。鼓式制动器是最早形式的汽车制动器,当盘式制动器还没有出现前,它已经广泛用于各类汽车上。但由于结构问题使它在制动过程中散热性能差和排水性能差,容易导致制动效率下降,因此在近三十年中,在轿

52、车领域上已经逐步退出让位给盘式制动器。但由于成本比较低,仍然在一些经济类轿车中使用,主要用于制动负荷比较小的后轮和驻车制动。典型的鼓式制动器主要由底板、制动鼓、制动蹄、轮缸(制动分泵)、回位弹簧、定位销等零部件组成。底板安装在车轴的固定位置上,它是固定不动的,上面装有制动蹄、轮缸、回位弹簧、定位销,承受制动时的旋转扭力。每一个鼓有一对制动蹄,制动蹄上有摩擦衬片。制动鼓则是安装在轮毂上,是随车轮一起旋转的部件,它是由一定份量的铸铁做成,形状似园鼓状。当制动时,轮缸活塞推动制动蹄压迫制动鼓,制动鼓受到摩擦减速,迫使车轮停止转动。在轿车制动鼓上,一般只有一个轮缸,在制动时轮缸受到来自总泵液力后,轮缸两端活塞会同时顶向

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论